Scientific name: Euphorbia esula
Common names: Leafy Spurge
Native distribution: Eurasia
Date assessed: July 15, 2012
Assessors: Pia Marie Paulone and Ellen Jacquart
Reviewers: Ted Anchor
Date Approved: September 21, 2012

Indiana Invasiveness Rank: High 70.00–80.00

<table>
<thead>
<tr>
<th>Invasiveness Ranking Summary</th>
<th>Total (Total Answered*) Possible</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Ecological impact</td>
<td>40 (30)</td>
<td>17</td>
</tr>
<tr>
<td>2 Biological characteristic and dispersal ability</td>
<td>25 (22)</td>
<td>19</td>
</tr>
<tr>
<td>3 Ecological amplitude and distribution</td>
<td>25 (21)</td>
<td>16</td>
</tr>
<tr>
<td>4 Difficulty of control</td>
<td>10 (10)</td>
<td>8</td>
</tr>
<tr>
<td>Outcome score</td>
<td>100 (83)</td>
<td>60a</td>
</tr>
<tr>
<td>Relative maximum score †</td>
<td>72.29</td>
<td></td>
</tr>
<tr>
<td>Indiana Invasiveness Rank §</td>
<td>High 70.00–80.00</td>
<td></td>
</tr>
</tbody>
</table>

* For questions answered “unknown” do not include point value in “Total Answered Points Possible.” If “Total Answered Points Possible” is less than 70.00 points, then the overall invasive rank should be listed as “Unknown.”
†Calculated as 100(a/b) to two decimal places.
§Very High >80.00; High 70.00–80.00; Moderate 50.00–69.99; Low 40.00–49.99; Insignificant <40.00

A. DISTRIBUTION (KNOWN/POTENTIAL):

A1. Has this species been documented to persist without cultivation in IN? (reliable source; voucher not required)
X Yes – continue to A2.2

A2. What is the likelihood that this species will occur and persist outside of cultivation given the climate in Indiana? (obtain from occurrence data in other states with similar climates)
☐ Likely – continue to A3
☐ Not likely
INDIANA
NON-NATIVE PLANT INVASIVENESS RANKING FORM
ASSESSMENT FOR INVASIVE PLANTS NOT IN TRADE
Form originally created for use in New York, Indiana Form version date: November 1, 2010

Documentation:

A3 Describe the potential or known suitable habitats within Indiana (underlined). Natural habitats include all habitats not under active human management. Managed habitats are indicated with an asterisk.

Aquatic Habitats
- Rivers/streams
- Natural lakes and ponds
- Reservoirs/impoundments

Wetland Habitats
- Marshes
- Fens
- Bogs
- Shrub swamps
- Forested wetlands/riparian
- Beaches/dunes
- Ditches*

Upland Habitats
- Forest
- Savannas
- Barrens
- Prairies
- Cultivated*
- Old Fields*
- Roadsides*

Other potential or known suitable habitats within Indiana:
- Railroad, gravel pit.

Documentation:
Sources of information:

B. INVASIVENESS RANKING
Questions apply to areas similar in climate and habitats to Indiana unless specified otherwise.

1. ECOLOGICAL IMPACT

1.1. Impact on Natural Ecosystem Processes and System-Wide Parameters (e.g. fire regime, geomorphological changes (erosion, sedimentation rates), hydrologic regime, nutrient and mineral dynamics, light availability, salinity, pH)

A. No perceivable impact on ecosystem processes based on research studies, or the absence of impact information if a species is widespread (>10 occurrences in minimally managed areas), has been well-studied (>10 reports/publications), and has been present in the northeast for >100 years. 0

B. Influences ecosystem processes to a minor degree (e.g., has a perceivable but mild influence on soil nutrient availability) 3

C. Significant alteration of ecosystem processes (e.g., increases sedimentation rates along streams or coastlines, reduces open water that are important to waterfowl) 7

D. Major, possibly irreversible, alteration or disruption of ecosystem processes (e.g., the species alters geomorphology and/or hydrology, affects fire frequency, alters soil pH, or fixes substantial levels of nitrogen in the soil making soil unlikely to support certain native plants or more likely to favor non-native species) 10

U. Unknown

Score 3

Documentation:
Identify ecosystem processes impacted (or if applicable, justify choosing answer A in the absence of impact information)
Can reduce soil moisture and nutrients. Various compounds in latex presumable impacts soil chemistry but specific studies not known.
Sources of information:
1.2. Impact on Natural Community Structure

<table>
<thead>
<tr>
<th>Impact Level</th>
<th>Description</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>No perceived impact; establishes in an existing layer without influencing its structure</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>Influences structure in one layer (e.g., changes the density of one layer)</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>Significant impact in at least one layer (e.g., creation of a new layer or elimination of an existing layer)</td>
<td>7</td>
</tr>
<tr>
<td>D</td>
<td>Major alteration of structure (e.g., covers canopy, eradicating most or all layers below)</td>
<td>10</td>
</tr>
<tr>
<td>U</td>
<td>Unknown</td>
<td></td>
</tr>
</tbody>
</table>

Documentation:
Identify type of impact or alteration:
Can overtake large areas of open land producing stands with up to 2000 shoots per sq. meter; forb and grass layer in natural areas may be completely displaced by leafy spurge in a few years.
Sources of information:
Biesboer & Eckardt, 1996.

Score 7

1.3. Impact on Natural Community Composition

<table>
<thead>
<tr>
<th>Impact Level</th>
<th>Description</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>No perceived impact; causes no apparent change in native populations</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>Influences community composition (e.g., reduces the number of individuals in one or more native species in the community)</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>Significantly alters community composition (e.g., produces a significant reduction in the population size of one or more native species in the community)</td>
<td>7</td>
</tr>
<tr>
<td>D</td>
<td>Causes major alteration in community composition (e.g., results in the extirpation of one or several native species, reducing biodiversity or change the community composition towards species exotic to the natural community)</td>
<td>10</td>
</tr>
<tr>
<td>U</td>
<td>Unknown</td>
<td></td>
</tr>
</tbody>
</table>

Documentation:
Identify type of impact or alteration:
Displaces native vegetation.
Sources of information:
Biesboer & Eckardt, 1996.

Score 7

1.4. Impact on other species or species groups (cumulative impact of this species on the animals, fungi, microbes, and other organisms in the community it invades. Examples include reduction in nesting/foraging sites; reduction in habitat connectivity; injurious components such as spines, thorns, burrs, toxins; suppresses soil/sediment microflora; interferes with native pollinators and/or pollination of a native species; hybridizes with a native species; hosts a non-native disease which impacts a native species)

<table>
<thead>
<tr>
<th>Impact Level</th>
<th>Description</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Negligible perceived impact</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>Minor impact</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>Moderate impact</td>
<td>7</td>
</tr>
<tr>
<td>D</td>
<td>Severe impact on other species or species groups</td>
<td>10</td>
</tr>
<tr>
<td>U</td>
<td>Unknown</td>
<td></td>
</tr>
</tbody>
</table>

Documentation:
Identify type of impact or alteration:
One study found late-season herbivory by migratory grasshopper (Melanoplus sanguinipes) nymphs resulted in reduced nymphal weights. The chemicals present in the latex.
presumably impact soil microflora, but specific studies not known.
Sources of information:
Rizk, 1987; Roberts & Olson, 1999.

<table>
<thead>
<tr>
<th>Total Possible</th>
<th>Section One Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>17</td>
</tr>
</tbody>
</table>

2. **BIOLOGICAL CHARACTERISTICS AND DISPERSAL ABILITY**

2.1. Mode and rate of reproduction

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>No reproduction by seeds or vegetative propagules (i.e. plant sterile with no sexual or asexual reproduction).</td>
<td>0</td>
</tr>
<tr>
<td>B.</td>
<td>Limited reproduction (fewer than 10 viable seeds per plant AND no vegetative reproduction; if viability is not known, then maximum seed production is less than 100 seeds per plant and no vegetative reproduction)</td>
<td>1</td>
</tr>
<tr>
<td>C.</td>
<td>Moderate reproduction (fewer than 100 viable seeds per plant - if viability is not known, then maximum seed production is less than 1000 seeds per plant - OR limited successful vegetative spread documented)</td>
<td>2</td>
</tr>
<tr>
<td>D.</td>
<td>Abundant reproduction with vegetative asexual spread documented as one of the prime reproductive means OR more than 100 viable seeds per plant (if viability is not known, then maximum seed production reported to be greater than 1000 seeds per plant.)</td>
<td>4</td>
</tr>
<tr>
<td>U.</td>
<td>Unknown</td>
<td>Score 4</td>
</tr>
</tbody>
</table>

Documentation:
Describe key reproductive characteristics (including seeds per plant):
The number of seeds produced per stalk can range as high as 250-200. Vegetative reproduction also occurs from both crown buds and root buds that overwinter and produce new shoots in the spring.
Sources of information:
Biesboer & Eckardt, 1996.

2.2. Innate potential for long-distance dispersal (e.g. bird dispersal, sticks to animal hair, buoyant fruits, pappus for wind-dispersal)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>Does not occur (no long-distance dispersal mechanisms)</td>
<td>0</td>
</tr>
<tr>
<td>B.</td>
<td>Infrequent or inefficient long-distance dispersal (occurs occasionally despite lack of adaptations)</td>
<td>1</td>
</tr>
<tr>
<td>C.</td>
<td>Moderate opportunities for long-distance dispersal (adaptations exist for long-distance dispersal, but studies report that 95% of seeds land within 100 meters of the parent plant)</td>
<td>2</td>
</tr>
<tr>
<td>D.</td>
<td>Numerous opportunities for long-distance dispersal (adaptations exist for long-distance dispersal and evidence that many seeds disperse greater than 100 meters from the parent plant)</td>
<td>4</td>
</tr>
<tr>
<td>U.</td>
<td>Unknown</td>
<td>Score 4</td>
</tr>
</tbody>
</table>

Documentation:
Identify dispersal mechanisms:
Endozoochory: sharp-tailed grouse and deer have been documented to disperse viable seed. One study found mourning doves (Zenaida macroura), may rarely act as dispersal agents.
Hydrochory: the seeds can float and initial infestations often occur along stream or river banks where seeds have floated into appropriate habitat.
Myrmecochory: Elaiosomes (appendages) on seeds may lead to ant dispersal, there have been reports of some ant species foraging further than 100 meters from the nest (Steck et al., 2009).
Sources of information:
Blockstein et al., 1987; Pemberton & Irving, 1990; Biesboer & Eckardt, 1996; Wald et al.,
2.3. Potential to be spread by human activities (both directly and indirectly – possible mechanisms include: commercial sales, use as forage/revegetation, spread along highways, transport on boats, contaminated compost, land and vegetation management equipment such as mowers and excavators, etc.)

A. Does not occur 0
B. Low (human dispersal to new areas occurs almost exclusively by direct means and is infrequent or inefficient) 1
C. Moderate (human dispersal to new areas occurs by direct and indirect means to a moderate extent) 2
D. High (opportunities for human dispersal to new areas by direct and indirect means are numerous, frequent, and successful) 3
U. Unknown

Score 2

Documentation:
Identify dispersal mechanisms:
No sources located dealing with human transportation; possibly disseminated via land management equipment. Can be spread through mowing contaminated hay.

Sources of information:

2.4. Characteristics that increase competitive advantage, such as shade tolerance, ability to grow on infertile soils, perennial habit, fast growth, nitrogen fixation, allelopathy, etc.

A. Possesses no characteristics that increase competitive advantage 0
B. Possesses one characteristic that increases competitive advantage 3
C. Possesses two or more characteristics that increase competitive advantage 6
U. Unknown

Score 6

Documentation:
Evidence of competitive ability:
Perennial, ability to grow on infertile soils, allelopathy. Perennial with a self-compatible reproductive system, and may be a pseudogamous apomict (Selbo & Carmichael, 1999). Seedlings have a vigorous primary root system (Raju et al., 1963); and produce an extensive root system containing abundant organic reserves (Cyr & Bewley, 1989). Tolerant of a wide range of habitats and may occur in damp or dry soils. One study found leafy spurge exhibits allelopathic characteristics (Steenhagen & Zomdahl, 1979). A high degree of genetic variability was found among North American leafy spurge populations (Rowe et al., 1997; Lym & Carlson, 2002), which may enhance ecological amplitude. Most herbivores in North America avoid leafy spurge, possibly because it contains high concentrations of terpenoids and condensed tannins (Roberts & Olson, 1999).

Sources of information:
Raju et al., 1963; Steenhagen & Zomdahl, 1979; Cyr & Bewley, 1989; Biesboer & Eckardt, 1996; Roberts & Olson, 1999; Selbo & Carmichael, 1999; Rowe et al., 1997; Lym & Carlson, 2002.

2.5. Growth vigor

A. Does not form thickets or have a climbing or smothering growth habit 0
B. Has climbing or smothering growth habit, forms a dense layer above shorter vegetation, forms dense thickets, or forms a dense floating mat in aquatic systems where it smothers other vegetation or organisms 2
U. Unknown
INDIANA
NON-NATIVE PLANT INVASIVENESS RANKING FORM
ASSESSMENT FOR INVASIVE PLANTS NOT IN TRADE
Form originally created for use in New York. Indiana Form version date: November 1, 2010

I. Documentation:
Describe growth form:
Reported to produce stands with up to 2000 shoots per sq. meter. Not known to form thickets or smothering habit.
Sources of information:
Biesboer & Eckardt, 1996.

Score 0

2.6. Germination/Regeneration
A. Requires open soil or water and disturbance for seed germination, or regeneration from vegetative propagules. 0
B. Can germinate/regenerate in vegetated areas but in a narrow range or in special conditions 2
C. Can germinate/regenerate in existing vegetation in a wide range of conditions 3
U. Unknown (No studies have been completed)

Score U

Documentation:
Describe germination requirements:
In one study germination rates as high as 87% were obtained under experimental conditions; the issue of disturbance was not addressed.
Sources of information:
Foley, 2008.

2.7. Other species in the genus invasive in Indiana or elsewhere
A. No 0
B. Yes 3
U. Unknown

Score 3

Documentation:
Species:

3. ECOLOGICAL AMPLITUDE AND DISTRIBUTION
3.1. Density of stands in natural areas in the northeastern USA and eastern Canada (use same definition as Gleason & Cronquist which is: “The part of the United States covered extends from the Atlantic Ocean west to the western boundaries of Minnesota, Iowa, northern Missouri, and southern Illinois, south to the southern boundaries of Virginia, Kentucky, and Illinois, and south to the Missouri River in Missouri. In Canada the area covered includes Nova Scotia, Prince Edward Island, New Brunswick, and parts of Quebec and Ontario lying south of the 47th parallel of latitude”)
A. No large stands (no areas greater than 1/4 acre or 1000 square meters) 0
B. Large dense stands present in areas with numerous invasive species already present or disturbed landscapes 2
C. Large dense stands present in areas with few other invasive species present (i.e. ability to invade relatively pristine natural areas) 4
U. Unknown

Score U

Total Possible 22
Section Two Total 19
Documentation:
Identify reason for selection, or evidence of weedy history:
All large stands reported from upper Great Plains region; stand size not well documented from the Northeast.
Sources of information:
Fellows, 2004; Glenn & Moore, 2008.

3.2. Number of habitats the species may invade

<table>
<thead>
<tr>
<th>Number of Habitats</th>
<th>Scoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Not known to invade any natural habitats given at A2.2</td>
<td>0</td>
</tr>
<tr>
<td>B. Known to occur in two or more of the habitats given at A2.2, with at least one a natural habitat</td>
<td>1</td>
</tr>
<tr>
<td>C. Known to occur in three or more of the habitats given at A2.2, with at least two a natural habitat</td>
<td>2</td>
</tr>
<tr>
<td>D. Known to occur in four or more of the habitats given at A2.2, with at least three a natural habitat</td>
<td>4</td>
</tr>
<tr>
<td>E. Known to occur in more than four of the habitats given at A2.2, with at least four a natural habitat</td>
<td>6</td>
</tr>
<tr>
<td>U. Unknown</td>
<td>Score 6</td>
</tr>
</tbody>
</table>

Documentation:
Identify type of habitats where it occurs and degree/type of impacts:
See A2.2.
Sources of information:
Biesboer and Eckardt 1996; Fellows, 2004; Brooklyn Botanic Garden, 2009

3.3. Role of disturbance in establishment

<table>
<thead>
<tr>
<th>Role of Disturbance</th>
<th>Scoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Requires anthropogenic disturbances to establish.</td>
<td>0</td>
</tr>
<tr>
<td>B. May occasionally establish in undisturbed areas but can readily establish in areas with natural or anthropogenic disturbances.</td>
<td>2</td>
</tr>
<tr>
<td>C. Can establish independent of any known natural or anthropogenic disturbances.</td>
<td>4</td>
</tr>
<tr>
<td>U. Unknown</td>
<td>Score 2</td>
</tr>
</tbody>
</table>

Documentation:
Identify type of disturbance:
Reported to invade disturbed and undisturbed sites, but usually is found in disturbed areas.
Sources of information:

3.4. Climate in native range

<table>
<thead>
<tr>
<th>Climate in Native Range</th>
<th>Scoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Native range does not include climates similar to Indiana</td>
<td>0</td>
</tr>
<tr>
<td>B. Native range possibly includes climates similar to at least part of Indiana</td>
<td>1</td>
</tr>
<tr>
<td>C. Native range includes climates similar to those in Indiana</td>
<td>3</td>
</tr>
<tr>
<td>U. Unknown</td>
<td>Score 3</td>
</tr>
</tbody>
</table>

Documentation:
Describe what part of the native range is similar in climate to Indiana:
Northern China, Korea, Mongolia, Kazakhstan.
Sources of information:

3.5. Current introduced distribution in the northeastern USA and eastern Canada (see
question 3.1 for definition of geographic scope)

A. Not known from the northeastern US and adjacent Canada 0
B. Present as a non-native in one northeastern USA state and/or eastern Canadian province. 1
C. Present as a non-native in 2 or 3 northeastern USA states and/or eastern Canadian provinces. 2
D. Present as a non-native in 4–8 northeastern USA states and/or eastern Canadian provinces, and/or categorized as a problem weed (e.g., “Noxious” or “Invasive”) in 1 northeastern state or eastern Canadian province. 3
E. Present as a non-native in >8 northeastern USA states and/or eastern Canadian provinces, and/or categorized as a problem weed (e.g., “Noxious” or “Invasive”) in 2 northeastern states or eastern Canadian provinces. 4
U. Unknown

Score 4

Documentation:
Identify states and provinces invaded:
CT, DE, IA, IL, IN, MA, MD, ME, MI, MN, NH, NJ, NY, OH, PA, VA, VT, WI, WV; NB, NS, ON, PE, QC.

There is considerable disagreement whether the section Esula complex is a single variable species or a complex of species, including E. cyparissias. In addition, hybridization is documented between E. cyparissias and E. esula s. str. (E. x pseudoesula) (Schulz-Schaeffer & Gerhardt, 1987; Crompton et al., 1990). Furthermore, some taxonomists have recently subsumed E. cyparissias into E. esula (Zhengyi & Raven, 2008). The success of control programs, especially biocontrol, may be dependent on correct interpretation of spurge taxonomy.

Sources of information:
See known introduced range in plants.usda.gov, and update with information from states and Canadian provinces.

3.6. Current introduced distribution of the species in natural areas in Indiana

A. Present in no Indiana counties 0
B. Present in 1-10 Indiana counties 1
C. Present in 11-20 Indiana counties 2
D. Present in 21-50 Indiana counties 3
E. Present in more than 50 Indiana counties or on Federal noxious weed list 4
U. Unknown

Score 1

Documentation:
Describe distribution:
See A1.1.

Sources of information:

Total Possible 21
Section Three Total 16

4. DIFFICULTY OF CONTROL

4.1. Seed banks
INDIANA
NON-NATIVE PLANT INVASIVENESS RANKING FORM
ASSESSMENT FOR INVASIVE PLANTS NOT IN TRADE
Form originally created for use in New York, Indiana Form version date: November 1, 2010

A. Seeds (or vegetative propagules) remain viable in soil for less than 1 year, or does not make viable seeds or persistent propagules. 0
B. Seeds (or vegetative propagules) remain viable in soil for at least 1 to 10 years 2
C. Seeds (or vegetative propagules) remain viable in soil for more than 10 years 3
U. Unknown

Score 2

Documentation:
Identify longevity of seed bank:
One study reported that seeds can remain viable in the soil for up to 8 years; but 99% of the germination occurs within the first two years. No evidence for viability over ten years.
Sources of information:

4.2. Vegetative regeneration
A. No regrowth following removal of aboveground growth 0
B. Regrowth from ground-level meristems 1
C. Regrowth from extensive underground system 2
D. Any plant part is a viable propagule 3
U. Unknown

Score 2

Documentation:
Describe vegetative response:
Leafy spurge forms an extensive root system containing abundant organic reserves.
Sources of information:

4.3. Level of effort required
A. Management is not required: e.g., species does not persist without repeated anthropogenic disturbance. 0
B. Management is relatively easy and inexpensive: e.g. 10 or fewer person-hours of manual effort (pulling, cutting and/or digging) can eradicate a 1 acre infestation in 1 year (infestation averages 50% cover or 1 plant/100 ft²). 2
C. Management requires a major short-term investment: e.g. 100 or fewer person-hours/year of manual effort, or up to 10 person-hours/year using mechanical equipment (chain saws, mowers, etc.) for 2-5 years to suppress a 1 acre infestation. Eradication is difficult, but possible (infestation as above). 3
D. Management requires a major investment: e.g. more than 100 person-hours/year of manual effort, or more than 10 person hours/year using mechanical equipment, or the use of herbicide, grazing animals, fire, etc. for more than 5 years to suppress a 1 acre infestation. Eradication may be impossible (infestation as above). 4
U. Unknown

Score 4

Documentation:
Identify types of control methods and time-term required:
There is considerable disagreement whether leafy spurge is a single variable species or a complex of species; the success of control programs, especially biocontrol, may be dependent on correct interpretation of spurge taxonomy (Crompton et al., 1990).
Monitoring and repeat control measures are generally considered necessary for at least ten years following initiation of active management.

Sources of information:
Forwood & McCarty, 1980; Batra, 1983; Crompton et al., 1990; Everitt, et al. 1995; Biesboer & Eckardt, 1996; Hansen et al., 1997; Rowe et al., 1997; Sobhian et al., 2000; Lym & Carlson, 2002; Mico & Shay, 2002; Campobasso et al., 2004; Nelson & Lym, 2004; Lym, 2005; Taylor et al., 2005; Skinner et al., 2006; Seefeldt et al., 2007; Larson et al., 2007; Joshi, 2008; Larson et al., 2008;

<table>
<thead>
<tr>
<th>Total Possible</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section Four Total</td>
<td>8</td>
</tr>
<tr>
<td>Total for 4 sections Possible</td>
<td>83</td>
</tr>
<tr>
<td>Total for 4 sections</td>
<td>58</td>
</tr>
</tbody>
</table>

[References for species assessment:

Citation: This IN ranking form may be cited as: Jacquart, E.M., 2012. Invasiveness ranking system for non-native plants of Indiana. Unpublished. Invasive Plant Advisory Committee (IPAC) to the Indiana Invasive Species Council, Indianapolis, IN.

Acknowledgments: The IN ranking form is an adaptation for Indiana use of the form created for New York by Jordan et al. (2009), cited below. Documentation for species assessed for New York are used for Indiana where they are applicable. The Invasive Plant Advisory Committee was created by the Indiana Invasive Species Council in October 2010, and is made up of the original members of the Indiana Invasive Plant Assessment Working Group (IPSAWG). Original members of IPSAWG included representatives of the The Nature Conservancy; Indiana Native Plant and Wildflower Society; Indiana Nursery and Landscape Association; Indiana Chapter of the American Society of Landscape Architects; Indiana Forage Council; Indiana Wildlife Federation; Indiana State Beekeepers.
INDIANA
NON-NATIVE PLANT INVASIVENESS RANKING FORM
ASSESSMENT FOR INVASIVE PLANTS NOT IN TRADE
Form originally created for use in New York. Indiana Form version date: November 1, 2010

References for the Indiana ranking form:

References for the New York ranking form:

