Scientific name: *Cynanchum louiseae* (C. *nigrum*, *Vincetoxicum nigrum*)

USDA Plants Code: CYLO11

Common names: Black swallow-wort

Native distribution: Southwest Europe

Date assessed: April 22, 2011

Assessors: Pia Marie Paulone and Ellen Jacquart

Reviewers: Brenda Howard

Date Approved: September 21, 2012

Indiana Invasiveness Rank: Very High (Relative Maximum Score >80.00)

<table>
<thead>
<tr>
<th>Invasiveness Ranking Summary (see details under appropriate sub-section)</th>
<th>Total (Total Answered*) Possible</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Ecological impact</td>
<td>40 (40)</td>
<td>34</td>
</tr>
<tr>
<td>2 Biological characteristic and dispersal ability</td>
<td>25 (25)</td>
<td>24</td>
</tr>
<tr>
<td>3 Ecological amplitude and distribution</td>
<td>25 (25)</td>
<td>22</td>
</tr>
<tr>
<td>4 Difficulty of control</td>
<td>10 (7)</td>
<td>6</td>
</tr>
<tr>
<td>Outcome score</td>
<td>100 (97)(^b)</td>
<td>86(^a)</td>
</tr>
</tbody>
</table>

Relative maximum score \(^{\dagger}\) = 88.66

Indiana Invasiveness Rank \(^{§}\) = Very High (Relative Maximum Score >80.00)

*For questions answered “unknown” do not include point value in “Total Answered Points Possible.” If “Total Answered Points Possible” is less than 70.00 points, then the overall invasive rank should be listed as “Unknown.”

\(^{\dagger}\)Calculated as 100(a/b) to two decimal places.

\(^{§}\)Very High >80.00; High 70.00–80.00; Moderate 50.00–69.99; Low 40.00–49.99; Insignificant <40.00

A. DISTRIBUTION (KNOWN/POTENTIAL):

A1 Has this species been documented to persist without cultivation in IN? (reliable source; voucher not required)

- [x] Yes – continue to A2.2
- [] No – continue to A2.1

A2 What is the likelihood that this species will occur and persist outside of cultivation given the climate in Indiana? (obtain from occurrence data in other states with similar climates)

- [x] Likely – continue to A3
- [] Not likely – stop here. There is no need to assess the species

Legend

- **[Gray]** Date: 8/13/2012
- **[Clear]** No Record
- **[Black Stippled]** Indiana
- **[Clear Black Stippled]** Other State
A3 Describe the potential or known suitable habitats within Indiana (underlined). Natural habitats include all habitats not under active human management. Managed habitats are indicated with an asterisk.

Aquatic Habitats
- Rivers/streams
- Natural lakes and ponds
- Reservoirs/impoundments*

Wetland Habitats
- Marshes
- Bogs
- Shrub swamps
- Forested wetlands/riparian
- Beaches/dunes
- Ditches*

Upland Habitats
- Forest
- Savannas
- Barrens
- Prairies
- Cultivated*
- Old Fields*
- Roadsides*

Other potential or known suitable habitats within Indiana:
- Urban pavement cracks, flood plain ravines, river banks; coastal shores.

Documentation:
Sources of information:
Lawlor, 2001; DiTommaso et al., 2005; Cordeiro, 2006; Brooklyn Botanic Garden, 2009.

B. INVASIVENESS RANKING
Questions apply to areas similar in climate and habitats to Indiana unless specified otherwise.

1. ECOLOGICAL IMPACT

1.1. Impact on Natural Ecosystem Processes and System-Wide Parameters (e.g. fire regime, geomorphological changes (erosion, sedimentation rates), hydrologic regime, nutrient and mineral dynamics, light availability, salinity, pH)

A. No perceivable impact on ecosystem processes based on research studies, or the absence of impact information if a species is widespread (>10 occurrences in minimally managed areas), has been well-studied (>10 reports/publications), and has been present in the northeast for >100 years.

B. Influences ecosystem processes to a minor degree (e.g., has a perceivable but mild influence on soil nutrient availability)

C. Significant alteration of ecosystem processes (e.g., increases sedimentation rates along streams or coastlines, reduces open water that are important to waterfowl)

D. Major, possibly irreversible, alteration or disruption of ecosystem processes (e.g., the species alters geomorphology and/or hydrology, affects fire frequency, alters soil pH, or fixes substantial levels of nitrogen in the soil making soil unlikely to support certain native plants or more likely to favor non-native species)

U. Unknown

Score: 7

Documentation:
Identify ecosystem processes impacted (or if applicable, justify choosing answer A in the absence of impact information)
Ecosystem scale modification appears obvious but full impacts have not yet known as studies are lacking. Large stands clearly cause a significant decrease in light availability. Latex of plant probably impacts soil chemistry but specific studies on this not known.
1.2. Impact on Natural Community Structure

A. No perceived impact; establishes in an existing layer without influencing its structure
 Score 0

B. Influences structure in one layer (e.g., changes the density of one layer)
 Score 3

C. Significant impact in at least one layer (e.g., creation of a new layer or elimination of an existing layer)
 Score 7

D. Major alteration of structure (e.g., covers canopy, eradicating most or all layers below)
 Score 10

U. Unknown
 Score 7

Documentation:
Identify type of impact or alteration:
Large, monospecific stands can form in open, fully-exposed areas. In brushy areas, these vines can over-top and smother shrubs, forming the dominant cover and creating a new layer of vegetation. Under forested canopies, plants of shorter stature can comprise the dominant cover in the herbaceous understory layer.
Sources of information:
Lawlor, 2001; DiTommaso et al., 2005; Cordeiro, 2006.

1.3. Impact on Natural Community Composition

A. No perceived impact; causes no apparent change in native populations
 Score 0

B. Influences community composition (e.g., reduces the number of individuals in one or more native species in the community)
 Score 3

C. Significantly alters community composition (e.g., produces a significant reduction in the population size of one or more native species in the community)
 Score 7

D. Causes major alteration in community composition (e.g., results in the extirpation of one or several native species, reducing biodiversity or change the community composition towards species exotic to the natural community)
 Score 10

U. Unknown
 Score 10

Documentation:
Identify type of impact or alteration:
Can form dense populations which displace and eliminate native plant spp.
Sources of information:
Lawlor, 2001; DiTommaso et al., 2005; Cordeiro, 2006.

1.4. Impact on other species or species groups (cumulative impact of this species on the animals, fungi, microbes, and other organisms in the community it invades. Examples include reduction in nesting/foraging sites; reduction in habitat connectivity; injurious components such as spines, thorns, burrs, toxins; suppresses soil/sediment microflora; interferes with native pollinators and/or pollination of a native species; hybridizes with a native species; hosts a non-native disease which impacts a native species)

A. Negligible perceived impact
 Score 0

B. Minor impact
 Score 3

C. Moderate impact
 Score 7

D. Severe impact on other species or species groups
 Score 10

U. Unknown
 Score 10

Documentation:
I

NDIANA
NON-NATIVE PLANT INVASIVENESS RANKING FORM
ASSESSMENT FOR INVASIVE PLANTS NOT IN TRADE
Form originally created for use in New York
Indiana Form version date: November 1, 2010

Identify type of impact or alteration:
May adversely affect butterfly populations; Monarch’s oviposits on swallow-worts (instead of milkweeds) but suffer higher mortality; also displacing native milkweeds and affecting food plant supply for butterfly species that are dependent on these. Can act as an alternate host for rusts attacking Pinus species. Chemicals in latex probably affect composition of the soil microbial community. Studies suggest a decline in arthropod, lichens, and grassland bird diversity. Toxic to grazing mammals.
Sources of information:
Lawlor, 2001; DiTommaso et al., 2005; Ernst & Cappuccino, 2005; Cordeiro, 2006.

<table>
<thead>
<tr>
<th>Total Possible</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section One Total</td>
<td>34</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. BIOLOGICAL CHARACTERISTICS AND DISPERSAL ABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1. Mode and rate of reproduction</td>
</tr>
<tr>
<td>A. No reproduction by seeds or vegetative propagules (i.e. plant sterile with no sexual or asexual reproduction).</td>
</tr>
<tr>
<td>B. Limited reproduction (fewer than 10 viable seeds per plant AND no vegetative reproduction; if viability is not known, then maximum seed production is less than 100 seeds per plant and no vegetative reproduction)</td>
</tr>
<tr>
<td>C. Moderate reproduction (fewer than 100 viable seeds per plant - if viability is not known, then maximum seed production is less than 1000 seeds per plant - OR limited successful vegetative spread documented)</td>
</tr>
<tr>
<td>D. Abundant reproduction with vegetative asexual spread documented as one of the plants prime reproductive means OR more than 100 viable seeds per plant (if viability is not known, then maximum seed production reported to be greater than 1000 seeds per plant.)</td>
</tr>
<tr>
<td>U. Unknown</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Documentation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Describe key reproductive characteristics (including seeds per plant):</td>
</tr>
<tr>
<td>Single vine can produce thousands of seeds. Seeds are adventitiously polyembryonic, the additional embryos being formed from other diploid cells beyond the zygote.</td>
</tr>
<tr>
<td>Sources of information:</td>
</tr>
<tr>
<td>Lawlor, 2001; Hotchkiss et al., 2008.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2.2. Innate potential for long-distance dispersal (e.g. bird dispersal, sticks to animal hair, buoyant fruits, pappus for wind-dispersal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Does not occur (no long-distance dispersal mechanisms)</td>
</tr>
<tr>
<td>B. Infrequent or inefficient long-distance dispersal (occurs occasionally despite lack of adaptations)</td>
</tr>
<tr>
<td>C. Moderate opportunities for long-distance dispersal (adaptations exist for long-distance dispersal, but studies report that 95% of seeds land within 100 meters of the parent plant)</td>
</tr>
<tr>
<td>D. Numerous opportunities for long-distance dispersal (adaptations exist for long-distance dispersal and evidence that many seeds disperse greater than 100 meters from the parent plant)</td>
</tr>
<tr>
<td>U. Unknown</td>
</tr>
</tbody>
</table>

| Score | 4 |

<table>
<thead>
<tr>
<th>Documentation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify dispersal mechanisms:</td>
</tr>
<tr>
<td>A large proportion of seeds remains close to the parent plant, but many small, satellite populations are often found far downwind of large seed source populations through wind dispersal (anemochory).</td>
</tr>
</tbody>
</table>
2.3. Potential to be spread by human activities (both directly and indirectly – possible mechanisms include: commercial sales, use as forage/revegetation, spread along highways, transport on boats, contaminated compost, land and vegetation management equipment such as mowers and excavators, etc.)

A. Does not occur 0
B. Low (human dispersal to new areas occurs almost exclusively by direct means and is infrequent or inefficient) 1
C. Moderate (human dispersal to new areas occurs by direct and indirect means to a moderate extent) 2
D. High (opportunities for human dispersal to new areas by direct and indirect means are numerous, frequent, and successful) 3
U. Unknown

Score 2

Documentation:
Identify dispersal mechanisms:
Human land management activities may contribute to dispersal, such as mowing. This species is listed as a cultivated ornamental in the United States, although currently not widely available.
Sources of information:
Lawlor, 2001; DiTommaso et al., 2005; Cordeiro, 2006.

2.4. Characteristics that increase competitive advantage, such as shade tolerance, ability to grow on infertile soils, perennial habit, fast growth, nitrogen fixation, allelopathy, etc.

A. Possesses no characteristics that increase competitive advantage 0
B. Possesses one characteristic that increases competitive advantage 3
C. Possesses two or more characteristics that increase competitive advantage 6
U. Unknown

Score 6

Documentation:
Evidence of competitive ability:
Perennial, allelopathic [plant extracts of C. rossicum were found to contain potent inhibitors of plant pathogenic fungi, diverse bacteria, and herbivorous insects (Mogg et al., 2008)], tolerant to a wide range of light intensities, and can tolerate a variety of soil conditions. Can self-pollinate and long-lived flowers enhance fruit set. Polyembryonic seeds can produce multiple seedlings (DiTommaso et al., 2005), although a recent study on C. rossicum (Hotchkiss et al., 2008) suggests that any fitness advantage provided by polyembryony may be habitat (light) dependent.
Sources of information:
Lumer & Yost, 1995; Lawlor, 2001; DiTommaso et al., 2005; Cordeiro, 2006; Hotchkiss et al., 2008; Mogg et al., 2008.

2.5. Growth vigor

A. Does not form thickets or have a climbing or smothering growth habit 0
B. Has climbing or smothering growth habit, forms a dense layer above shorter vegetation, forms dense thickets, or forms a dense floating mat in aquatic systems where it smothers other vegetation or organisms 2
U. Unknown

Score 2
INDIANA

NON-NATIVE PLANT INVASIVENESS RANKING FORM

ASSESSMENT FOR INVASIVE PLANTS NOT IN TRADE

Form originally created for use in New York

Indiana Form version date: November 1, 2010

Documentation:

Describe growth form:

This species can form dense stands that can smother the herbaceous layer and shrubs.

Sources of information:

Lawlor, 2001; DiTommaso et al., 2005; Cordeiro, 2006.

2.6. Germination/Regeneration

A. Requires open soil or water and disturbance for seed germination, or regeneration from vegetative propagules.
 Score 0

B. Can germinate/regenerate in vegetated areas but in a narrow range or in special conditions
 Score 2

C. Can germinate/regenerate in existing vegetation in a wide range of conditions
 Score 3

U. Unknown (No studies have been completed)
 Score 3

Documentation:

Describe germination requirements:

Lawlor, 2001; DiTommaso et al., 2005; Cordeiro, 2006.

Sources of information:

Lumer & Yost, 1995; Lawlor, 2001; DiTommaso et al., 2005; Cordeiro, 2006.

2.7. Other species in the genus invasive in Indiana or elsewhere

A. No
 Score 0

B. Yes
 Score 3

U. Unknown
 Score 3

Documentation:

Species:

3. ECOLOGICAL AMPLITUDE AND DISTRIBUTION

3.1. Density of stands in natural areas in the northeastern USA and eastern Canada

(use same definition as Gleason & Cronquist which is: “The part of the United States covered extends from the Atlantic Ocean west to the western boundaries of Minnesota, Iowa, northern Missouri, and southern Illinois, south to the southern boundaries of Virginia, Kentucky, and Illinois, and south to the Missouri River in Missouri. In Canada the area covered includes Nova Scotia, Prince Edward Island, New Brunswick, and parts of Quebec and Ontario lying south of the 47th parallel of latitude”)

A. No large stands (no areas greater than 1/4 acre or 1000 square meters)
 Score 0

B. Large dense stands present in areas with numerous invasive species already present or disturbed landscapes
 Score 2

C. Large dense stands present in areas with few other invasive species present (i.e. ability to invade relatively pristine natural areas)
 Score 4

U. Unknown
 Score 4

Documentation:

Identify reason for selection, or evidence of weedy history:

Large stands observed in Northeast and southern Ontario, some in relatively pristine areas
with few other invasives present.
Sources of information:
Cordeiro, 2006.

3.2. Number of habitats the species may invade
A. Not known to invade any natural habitats given at A2.2 0
B. Known to occur in two or more of the habitats given at A2.2, with at least one a natural habitat. 1
C. Known to occur in three or more of the habitats given at A2.2, with at least two a natural habitat. 2
D. Known to occur in four or more of the habitats given at A2.2, with at least three a natural habitat. 4
E. Known to occur in more than four of the habitats given at A2.2, with at least four a natural habitat. 6
U. Unknown

Score 6

Documentation:
Identify type of habitats where it occurs and degree/type of impacts:
See A2.2.
Sources of information:
Lawlor, 2001; DiTommaso et al., 2005; Cordeiro, 2006; Brooklyn Botanic Garden, 2009

3.3. Role of disturbance in establishment
A. Requires anthropogenic disturbances to establish. 0
B. May occasionally establish in undisturbed areas but can readily establish in areas with natural or anthropogenic disturbances. 2
C. Can establish independent of any known natural or anthropogenic disturbances. 4
U. Unknown

Score 4

Documentation:
Identify type of disturbance:
Species has been noted in forested areas without any recent known natural or anthropogenic disturbances. This species is often associated with disturbances; however, once established, the plant will readily move into nearby, less disturbed habitats.
Sources of information:
Lawlor, 2001; DiTommaso et al., 2005; Cordeiro, 2006.

3.4. Climate in native range
A. Native range does not include climates similar to Indiana 0
B. Native range possibly includes climates similar to at least part of Indiana 1
C. Native range includes climates similar to those in Indiana 3
U. Unknown

Score 3

Documentation:
Describe what part of the native range is similar in climate to Indiana:
Europe.
Sources of information:
Tutin & Heywood, 1972.

3.5. Current introduced distribution in the northeastern USA and eastern Canada (see question 3.1 for definition of geographic scope)
INDIANA
NON-NATIVE PLANT INVASIVENESS RANKING FORM
ASSESSMENT FOR INVASIVE PLANTS NOT IN TRADE
Form originally created for use in New York
Indiana Form version date: November 1, 2010

A.	Not known from the northeastern US and adjacent Canada	0
B.	Present as a non-native in one northeastern USA state and/or eastern Canadian province.	1
C.	Present as a non-native in 2 or 3 northeastern USA states and/or eastern Canadian provinces.	2
D.	Present as a non-native in 4–8 northeastern USA states and/or eastern Canadian provinces, and/or categorized as a problem weed (e.g., “Noxious” or “Invasive”) in 1 northeastern state or eastern Canadian province.	3
E.	Present as a non-native in >8 northeastern USA states and/or eastern Canadian provinces. and/or categorized as a problem weed (e.g., “Noxious” or “Invasive”) in 2 northeastern states or eastern Canadian provinces.	4
U.	Unknown	4

Documentation:
- Identify states and provinces invaded: CT, IL, IN, KY, MA, MD, ME, MI, MN, NH, NJ, NY, OH, PA, RI, VT, WI; Ontario, Quebec
- Sources of information:
 - See known introduced range in plants.usda.gov, and update with information from states and Canadian provinces.
 - USDA, 2009.

3.6. Current introduced distribution of the species in natural areas in Indiana

A.	Present in no Indiana counties	0
B.	Present in 1-10 Indiana counties	1
C.	Present in 11-20 Indiana counties	2
D.	Present in 21-50 Indiana counties	3
E.	Present in more than 50 Indiana counties or on Federal noxious weed list	4
U.	Unknown	1

Documentation:
- Describe distribution:
 - Documented in 3 counties; see A1.1.
- Sources of information:

4. DIFFICULTY OF CONTROL

4.1. Seed banks

A.	Seeds (or vegetative propagules) remain viable in soil for less than 1 year, or does not make viable seeds or persistent propagules.	0
B.	Seeds (or vegetative propagules) remain viable in soil for at least 1 to 10 years	2
C.	Seeds (or vegetative propagules) remain viable in soil for more than 10 years	3
U.	Unknown	U

| Total Possible | 25 |
| Section Three Total | 22 |
Documentation:

Identify longevity of seed bank:
Seed bank dynamics are unknown, most seeds germinate in the fall upon formation or in the subsequent spring. However, longevity of seeds beyond this is not known.

Sources of information:
Lawlor, 2001; DiTommaso et al., 2005; Cordeiro, 2006.

4.2. Vegetative regeneration

<table>
<thead>
<tr>
<th>Option</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. No regrowth following removal of aboveground growth</td>
<td>0</td>
</tr>
<tr>
<td>B. Regrowth from ground-level meristems</td>
<td>1</td>
</tr>
<tr>
<td>C. Regrowth from extensive underground system</td>
<td>2</td>
</tr>
<tr>
<td>D. Any plant part is a viable propagule</td>
<td>3</td>
</tr>
<tr>
<td>U. Unknown</td>
<td></td>
</tr>
</tbody>
</table>

Documentation:
Describe vegetative response:
Plants readily resprout from extensive underground rhizomes.

Sources of information:
Lawlor, 2001; DiTommaso et al., 2005; Cordeiro, 2006.

4.3. Level of effort required

<table>
<thead>
<tr>
<th>Option</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Management is not required: e.g., species does not persist without repeated anthropogenic disturbance.</td>
<td>0</td>
</tr>
<tr>
<td>B. Management is relatively easy and inexpensive: e.g. 10 or fewer person-hours of manual effort (pulling, cutting and/or digging) can eradicate a 1 acre infestation in 1 year (infestation averages 50% cover or 1 plant/100 ft²).</td>
<td>2</td>
</tr>
<tr>
<td>C. Management requires a major short-term investment: e.g. 100 or fewer person-hours/year of manual effort, or up to 10 person-hours/year using mechanical equipment (chain saws, mowers, etc.) for 2-5 years to suppress a 1 acre infestation. Eradication is difficult, but possible (infestation as above).</td>
<td>3</td>
</tr>
<tr>
<td>D. Management requires a major investment: e.g. more than 100 person-hours/year of manual effort, or more than 10 person hours/year using mechanical equipment, or the use of herbicide, grazing animals, fire, etc. for more than 5 years to suppress a 1 acre infestation. Eradication may be impossible (infestation as above).</td>
<td>4</td>
</tr>
<tr>
<td>U. Unknown</td>
<td></td>
</tr>
</tbody>
</table>

Documentation:
Identify types of control methods and time-term required:
Eradication of isolated plants and small patches is possible with persistence and an early detection system, but large scale infestations will require persistent effort and continuous follow-up monitoring to control.

Bioccontrol: There are few to no native pests, diseases or other natural controls in North America, but there are several potential biological control agents associated with the related Vincetoxicum hirundinaria in Europe.

Mechanical: Mowing and hand-pulling are only effective if the extensive and deep root crowns are removed and completely destroyed to prevent resprouting. A study of C. rossicum found that when a single cutting or mowing treatment is to be employed, cutting after the first fruits are produced but before they are fully developed is recommended.

Chemical: Response to herbicides varies by site and site condition. In treating whole plants
or tall stems, glyphosate can be used in denegraded patches with little desirable vegetation; triclopyr ester is better in sites with desirable grasses to be conserved. In cut-stem applications, glyphosate was superior to all triclopyr amine concentrations. Dicamba and 2,4-D alone had poor results on C. rossicum. In all cases, repeated follow up herbicide treatments are necessary.

Fire: Fire alone is ineffective but may be useful after herbicide to control seedlings.

Sources of information:
Lawlor, 2001; DiTommaso et al., 2005; McKague & Cappuccino, 2005; Cordeiro, 2006.

<table>
<thead>
<tr>
<th>Total Possible</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section Four Total</td>
<td>6</td>
</tr>
<tr>
<td>Total for 4 sections Possible</td>
<td>100</td>
</tr>
<tr>
<td>Total for 4 sections</td>
<td>86</td>
</tr>
</tbody>
</table>

References for species assessment:

Citation: This IN ranking form may be cited as: Jacquart, E.M. and P.M.Paulone. 2011. Invasiveness ranking system for non-native plants of Indiana. Unpublished. Invasive Plant Advisory Committee (IPAC) to the Indiana Invasive Species Council, Indianapolis, IN.

Acknowledgments: The IN ranking form is an adaptation for Indiana use of the form created for New York by Jordan et al. (2009), cited below. Documentation for species assessed for New York are used for Indiana where they are applicable. The Invasive Plant Advisory Committee was created by the Indiana Invasive Species Council in October 2010, and is made up of the original members of the Indiana Invasive Plant Assessment Working Group (IPSAWG). Original members of IPSAWG included representatives of the The Nature Conservancy; Indiana Native Plant and Wildflower Society; Indiana Nursery and Landscape Association; Indiana Chapter of the American Society of Landscape Architects; Indiana Forage Council; Indiana Wildlife Federation; Indiana State Beekeepers Association; Indiana Beekeeper’s Association; Department of Natural Resources; Hoosier National Forest; Indiana Academy of Science; Natural Resources Conservation Service; Indiana Department of Environmental Management; Indiana Department of Transportation; Purdue Cooperative Extension Service; Seed Administrator, Office of the Indiana State Chemist.

References for the Indiana ranking form:

References for the New York ranking form:

