INDIANA
NON-NATIVE PLANT INVASIVENESS RANKING FORM
ASSESSMENT FOR INVASIVE PLANTS NOT IN TRADE
Form originally created for use in New York
Indiana Form version date: November 1, 2010

Scientific name: *Convolvulus arvensis*
USDA Plants Code: COAR4

Common names: Field Bindweed

Native distribution: Eurasia and Mediterranean

Date assessed: 7-23-2013

Assessors: Zach Deitch, Ellen Jacquart

Reviewers: John Miller

Date Approved: 8-23-2013

Indiana Invasiveness Rank:

<table>
<thead>
<tr>
<th>Invasiveness Ranking Summary</th>
<th>Total (Total Answered*)</th>
<th>Total Possible</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Ecological impact</td>
<td>40 (40)</td>
<td>20</td>
</tr>
<tr>
<td>2 Biological characteristic and dispersal ability</td>
<td>25 (25)</td>
<td>22</td>
</tr>
<tr>
<td>3 Ecological amplitude and distribution</td>
<td>25 (25)</td>
<td>21</td>
</tr>
<tr>
<td>4 Difficulty of control</td>
<td>10 (10)</td>
<td>9</td>
</tr>
<tr>
<td>Outcome score</td>
<td>100 (100)†</td>
<td>72 a</td>
</tr>
<tr>
<td>Relative maximum score †</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indiana Invasiveness Rank §</td>
<td></td>
<td>High</td>
</tr>
</tbody>
</table>

* For questions answered “unknown” do not include point value in “Total Answered Points Possible.” If “Total Answered Points Possible” is less than 70.00 points, then the overall invasive rank should be listed as “Unknown.”
†Calculated as 100(a/b) to two decimal places.
§Very High >80.00; High 70.00–80.00; Moderate 50.00–69.99; Low 40.00–49.99; Insignificant <40.00

A. DISTRIBUTION (KNOWN/POTENTIAL):

A1 Has this species been documented to persist without cultivation in IN? (reliable source; voucher not required)

✅ Yes – continue to A2.2

☐ No – continue to A2.1

A2 What is the likelihood that this species will occur and persist outside of cultivation given the climate in Indiana? (obtain from occurrence data in other states with similar climates)

✅ Likely – continue to A3

☐ Not likely – stop here. There is no need to assess the species

Reported Status of Field Bindweed, *Convolvulus arvensis*
A3 Describe the potential or known suitable habitats within Indiana (underlined). Natural habitats include all habitats not under active human management. Managed habitats are indicated with an asterisk.

Aquatic Habitats
- Rivers/streams
- Natural lakes and ponds
- Reservoirs/impoundments*

Wetland Habitats
- Marshes
- Bogs
- Shrub swamps
- Forested wetlands/riparian
 - Forest
 - Savannas
 - Barrens
 - Prairies
 - Cultivated*
 - Old Fields*
 - Roadsides*

Upland Habitats
- Beaches/dunes
- Ditches*

Other potential or known suitable habitats within Indiana: establishes itself in any slightly disturbed habitat, including but not limited to fields, forests, railroads, garden edges, fencerows, and roadsides.

Documentation: Field bindweed is primarily a weed of nurseries, fields, waste places, agronomic crops, hedgerows, and fencerows that can be found throughout the United States. Can be found throughout temperate regions of both hemispheres.

Sources of information:
- Virginia Cooperative Extension, 2013.
- Plants For A Future, 2012.
- Sonday, 2009.

B. INVASIVENESS RANKING
Questions apply to areas similar in climate and habitats to Indiana unless specified otherwise.

1. **ECOLOGICAL IMPACT**

1.1. Impact on Natural Ecosystem Processes and System-Wide Parameters (e.g. fire regime, geomorphological changes (erosion, sedimentation rates), hydrologic regime, nutrient and mineral dynamics, light availability, salinity, pH)

A. No perceivable impact on ecosystem processes based on research studies, or the absence of impact information if a species is widespread (>10 occurrences in minimally managed areas), has been well-studied (>10 reports/publications), and has been present in the northeast for >100 years.

B. Influences ecosystem processes to a minor degree (e.g., has a perceivable but mild influence on soil nutrient availability)

C. Significant alteration of ecosystem processes (e.g., increases sedimentation rates along streams or coastlines, reduces open water that are important to waterfowl)

D. Major, possibly irreversible, alteration or disruption of ecosystem processes (e.g., the species alters geomorphology and/or hydrology, affects fire frequency, alters soil pH, or fixes substantial levels of nitrogen in the soil making soil unlikely to support certain native plants or more likely to favor non-native species)

U. Unknown
Score 3
Documentation:
Identify ecosystem processes impacted (or if applicable, justify choosing answer A in the absence of impact information)
Field bindweed is a very serious perennial vine that may reduce crop yields, increase irrigation costs, and interfere with harvesting. Field bindweed is an excellent competitor for soil moisture and thrives in dryland agricultural systems. The root system competitively extracts soil moisture and can survive extended periods of drought and repeated cultivation.
Sources of information:
California Department of Food and Agriculture, 2013.

1.2. Impact on Natural Community Structure

<table>
<thead>
<tr>
<th>Impact Description</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. No perceived impact; establishes in an existing layer without influencing its structure</td>
<td>0</td>
</tr>
<tr>
<td>B. Influences structure in one layer (e.g., changes the density of one layer)</td>
<td>3</td>
</tr>
<tr>
<td>C. Significant impact in at least one layer (e.g., creation of a new layer or elimination of an existing layer)</td>
<td>7</td>
</tr>
<tr>
<td>D. Major alteration of structure (e.g., covers canopy, eradicating most or all layers below)</td>
<td>10</td>
</tr>
<tr>
<td>U. Unknown</td>
<td></td>
</tr>
</tbody>
</table>

Documentation:
It can swamp and strangle the plants it climbs on. Can develop large patches that are difficult to control.

The threat it poses to rangelands and natural areas is unclear. Almost all research on field bindweed pertains to agriculture. Field bindweed is most likely to invade and reduce cover of native grasses and forbs in areas that are degraded due to past land use, current human activity, and fire suppression.
Sources of information:
Virginia Cooperative Extension, 2013.
Plants For A Future, 2012.
California Department of Food and Agriculture, 2013.
Lyons, 2013.

Score 7
Documentation:
Identify type of impact or alteration:
The threat it poses to rangelands and natural areas is unclear. Almost all research on field bindweed pertains to agriculture. Field bindweed threatens native plant communities by "decreasing biodiversity," and is a direct threat to several species.

1.3. Impact on Natural Community Composition

<table>
<thead>
<tr>
<th>Impact Description</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. No perceived impact; causes no apparent change in native populations</td>
<td>0</td>
</tr>
<tr>
<td>B. Influences community composition (e.g., reduces the number of individuals in one or more native species in the community)</td>
<td>3</td>
</tr>
<tr>
<td>C. Significantly alters community composition (e.g., produces a significant reduction in the population size of one or more native species in the community)</td>
<td>7</td>
</tr>
<tr>
<td>D. Causes major alteration in community composition (e.g., results in the extirpation of one or several native species, reducing biodiversity or change the community composition towards species exotic to the natural community)</td>
<td>10</td>
</tr>
<tr>
<td>U. Unknown</td>
<td></td>
</tr>
</tbody>
</table>

Documentation:
Identify type of impact or alteration:

The threat it poses to rangelands and natural areas is unclear. Almost all research on field bindweed pertains to agriculture. Field bindweed threatens native plant communities by "decreasing biodiversity," and is a direct threat to several species.

Sources of information:
1.4. Impact on other species or species groups (cumulative impact of this species on the animals, fungi, microbes, and other organisms in the community it invades. Examples include reduction in nesting/foraging sites; reduction in habitat connectivity; injurious components such as spines, thorns, burrs, toxins; suppresses soil/sediment microflora; interferes with native pollinators and/or pollination of a native species; hybridizes with a native species; hosts a non-native disease which impacts a native species)

A. Negligible perceived impact 0
B. Minor impact 3
C. Moderate impact 7
D. Severe impact on other species or species groups 10
U. Unknown

Score 7

Documentation:
Identify type of impact or alteration:

It is a climbing weed that supports itself by twining around any support it can find and can soon swamp and strangle other plants. Root system competitively extracts soil moisture and can survive extended periods of drought and repeated cultivation.

Field bindweed thrives under cultivated and irrigated conditions, and managers there suggest that field bindweed "outcompetes" native grasses. It has been suggested that field bindweed may be mildly toxic to some grazing animals, and that the amount of field bindweed that can be safely eaten by domestic sheep, cattle, and goats is not known. It is reported to cause distress in domestic pigs that eat it.

Sources of information:
Virginia Cooperative Extension, 2013.
Plants For A Future, 2012.
California Department of Food and Agriculture, 2013.
Lyons, 2013.

<table>
<thead>
<tr>
<th>Total Possible</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section One Total</td>
<td>20</td>
</tr>
</tbody>
</table>
2.2. Innate potential for long-distance dispersal (e.g. bird dispersal, sticks to animal hair, buoyant fruits, pappus for wind-dispersal)

A. Does not occur (no long-distance dispersal mechanisms) 0
B. Infrequent or inefficient long-distance dispersal (occurs occasionally despite lack of adaptations) 1
C. Moderate opportunities for long-distance dispersal (adaptations exist for long-distance dispersal, but studies report that 95% of seeds land within 100 meters of the parent plant) 2
D. Numerous opportunities for long-distance dispersal (adaptations exist for long-distance dispersal and evidence that many seeds disperse greater than 100 meters from the parent plant) 4

U. Unknown 4

Documentation:
Identify dispersal mechanisms:
Long-range dispersal has been attributed to birds, where seeds can remain viable after having been in the stomachs of some species for more than six days. It can also be spread by water, agricultural activities, and other animals.
Sources of information:
Sonday, 2009.
California Department of Food and Agriculture, 2013.

2.3. Potential to be spread by human activities (both directly and indirectly – possible mechanisms include: commercial sales, use as forage/revegetation, spread along highways, transport on boats, contaminated compost, land and vegetation management equipment such as mowers and excavators, etc.)

A. Does not occur 0
B. Low (human dispersal to new areas occurs almost exclusively by direct means and is infrequent or inefficient) 1
C. Moderate (human dispersal to new areas occurs by direct and indirect means to a moderate extent) 2
D. High (opportunities for human dispersal to new areas by direct and indirect means are numerous, frequent, and successful) 3
U. Unknown

Documentation:
Identify dispersal mechanisms:
Intentional: introduced to the New World for ornamental and medicinal purposes
Unintentional: It is also spread via water, eaten by animals, or transferred via farm equipment.
Sources of information:
Sunday, 2009.
California Department of Food and Agriculture, 2013.

2.4. Characteristics that increase competitive advantage, such as shade tolerance, ability to grow on infertile soils, perennial habit, fast growth, nitrogen fixation, allelopathy, etc.
A. Possesses no characteristics that increase competitive advantage 0
B. Possesses one characteristic that increases competitive advantage 3
C. Possesses two or more characteristics that increase competitive advantage 6
U. Unknown

Documentation:
Rate of Spread: HIGH (1-3 yrs)

Evidence of competitive ability:
Perennial, semi-shade tolerant. It can be very aggressive and persistent. It has considerable drought tolerance, flourishes on a wide range of soils, and has a very deep root system.
Sources of information:
Sunday, 2009.
Hilty, 2013.

2.5. Growth vigor
A. Does not form thickets or have a climbing or smothering growth habit 0
B. Has climbing or smothering growth habit, forms a dense layer above shorter vegetation, forms dense thickets, or forms a dense floating mat in aquatic systems where it smothers other vegetation or organisms 2
U. Unknown

Documentation:
Describe growth form:
It is a climbing weed that supports itself by twining around any support it can find and can soon swamp and strangle other plants.
Sources of information:
Virginia Cooperative Extension, 2013.
Plants For A Future, 2012.

2.6. Germination/Regeneration
A. Requires open soil or water and disturbance for seed germination, or regeneration from vegetative propagules. 0
B. Can germinate/regenerate in vegetated areas but in a narrow range or in special conditions 2
C. Can germinate/regenerate in existing vegetation in a wide range of conditions 3
U. Unknown (No studies have been completed)
Documentation:
Describe germination requirements:
Suitable for: light (sandy) and medium (loamy) soils and can grow in nutritionally poor soil.
Suitable pH: neutral and basic (alkaline) soils. It can grow in semi-shade (light woodland) or no shade. It prefers dry or moist soil.

Roots that spread radially act as a method of vegetative reproduction.

Germination can occur under various temperature regimes, from 5-40º C, but is highest and most rapid when temperatures fluctuate from 35-20º C. A 3-6 week period of chilling to ~ 5º C appears to increase germination. Light is not required.

Sources of information:
Plants For A Future, 2012.
Sonday, 2009.
California Department of Food and Agriculture, 2013.
Lyons, 2013.

2.7. Other species in the genus invasive in Indiana or elsewhere
A. No
B. Yes
U. Unknown

Documentation:
No other species in the genus invasive in Indiana.

3. ECOLOGICAL AMPLITUDE AND DISTRIBUTION
3.1. Density of stands in natural areas in the northeastern USA and eastern Canada (use same definition as Gleason & Cronquist which is: “The part of the United States covered extends from the Atlantic Ocean west to the western boundaries of Minnesota, Iowa, northern Missouri, and southern Illinois, south to the southern boundaries of Virginia, Kentucky, and Illinois, and south to the Missouri River in Missouri. In Canada the area covered includes Nova Scotia, Prince Edward Island, New Brunswick, and parts of Quebec and Ontario lying south of the 47th parallel of latitude”)
A. No large stands (no areas greater than 1/4 acre or 1000 square meters)
B. Large dense stands present in areas with numerous invasive species already present or disturbed landscapes
C. Large dense stands present in areas with few other invasive species present (i.e. ability to invade relatively pristine natural areas)
U. Unknown

Documentation:
Identify reason for selection, or evidence of weedy history:
Can develop large patches that are difficult to control.

Sources of information:
California Department of Food and Agriculture, 2013.

<table>
<thead>
<tr>
<th>3.2. Number of habitats the species may invade</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Not known to invade any natural habitats given at A2.2</td>
<td>0</td>
</tr>
<tr>
<td>B. Known to occur in two or more of the habitats given at A2.2, with at least one a natural habitat.</td>
<td>1</td>
</tr>
<tr>
<td>C. Known to occur in three or more of the habitats given at A2.2, with at least two a natural habitat.</td>
<td>2</td>
</tr>
<tr>
<td>D. Known to occur in four or more of the habitats given at A2.2, with at least three a natural habitat.</td>
<td>4</td>
</tr>
<tr>
<td>E. Known to occur in more than four of the habitats given at A2.2, with at least four a natural habitat.</td>
<td>6</td>
</tr>
<tr>
<td>U. Unknown</td>
<td></td>
</tr>
</tbody>
</table>

Documentation:
Identify type of habitats where it occurs and degree/type of impacts:
Nine habitats identified with five natural areas in A3.

Sources of information:
See A3.

<table>
<thead>
<tr>
<th>3.3. Role of disturbance in establishment</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Requires anthropogenic disturbances to establish.</td>
<td>0</td>
</tr>
<tr>
<td>B. May occasionally establish in undisturbed areas but can readily establish in areas with natural or anthropogenic disturbances.</td>
<td>2</td>
</tr>
<tr>
<td>C. Can establish independent of any known natural or anthropogenic disturbances.</td>
<td>4</td>
</tr>
<tr>
<td>U. Unknown</td>
<td></td>
</tr>
</tbody>
</table>

Documentation:
Identify type of disturbance:
Establishes itself primarily in any slightly disturbed habitat. It prefers open, sunny areas, but can establish in forests with a moderate canopy. In general, the roots are tolerant of frost but not standing water.

Sources of information:
Sonday, 2009.
Hilty, 2013.

<table>
<thead>
<tr>
<th>3.4. Climate in native range</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Native range does not include climates similar to Indiana</td>
<td>0</td>
</tr>
<tr>
<td>B. Native range possibly includes climates similar to at least part of Indiana</td>
<td>1</td>
</tr>
<tr>
<td>C. Native range includes climates similar to those in Indiana</td>
<td>3</td>
</tr>
<tr>
<td>U. Unknown</td>
<td></td>
</tr>
</tbody>
</table>

Documentation:
Describe what part of the native range is similar in climate to Indiana:
Field Bindweed can be found throughout the United States and Canada.
3.5. Current introduced distribution in the northeastern USA and eastern Canada (see question 3.1 for definition of geographic scope)

<table>
<thead>
<tr>
<th>Option</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Not known from the northeastern US and adjacent Canada</td>
<td>0</td>
</tr>
<tr>
<td>B. Present as a non-native in one northeastern USA state and/or eastern Canadian province.</td>
<td>1</td>
</tr>
<tr>
<td>C. Present as a non-native in 2 or 3 northeastern USA states and/or eastern Canadian provinces.</td>
<td>2</td>
</tr>
<tr>
<td>D. Present as a non-native in 4–8 northeastern USA states and/or eastern Canadian provinces, and/or categorized as a problem weed (e.g., “Noxious” or “Invasive”) in 1 northeastern state or eastern Canadian province.</td>
<td>3</td>
</tr>
<tr>
<td>E. Present as a non-native in >8 northeastern USA states and/or eastern Canadian provinces, and/or categorized as a problem weed (e.g., “Noxious” or “Invasive”) in 2 northeastern states or eastern Canadian provinces.</td>
<td>4</td>
</tr>
<tr>
<td>U. Unknown</td>
<td>4</td>
</tr>
</tbody>
</table>

Documentation:
Identify states and provinces invaded:
Field bindweed can be found throughout the United States and Canada.

Sources of information:
- Virginia Cooperative Extension, 2013.
- USDA, NRCS. 2007.

3.6. Current introduced distribution of the species in natural areas in Indiana

<table>
<thead>
<tr>
<th>Option</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Present in no Indiana counties</td>
<td>0</td>
</tr>
<tr>
<td>B. Present in 1-10 Indiana counties</td>
<td>1</td>
</tr>
<tr>
<td>C. Present in 11-20 Indiana counties</td>
<td>2</td>
</tr>
<tr>
<td>D. Present in 21-50 Indiana counties</td>
<td>3</td>
</tr>
<tr>
<td>E. Present in more than 50 Indiana counties or on Federal noxious weed list</td>
<td>4</td>
</tr>
<tr>
<td>U. Unknown</td>
<td>4</td>
</tr>
</tbody>
</table>

Documentation:
Describe distribution:
Documented in 91 counties of Indiana.

Sources of information:
See A1

Total Possible: 25
Section Three Total: 21

4. DIFFICULTY OF CONTROL

4.1. Seed banks

<table>
<thead>
<tr>
<th>Option</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Seeds (or vegetative propagules) remain viable in soil for less than 1 year, or does not make</td>
<td>0</td>
</tr>
</tbody>
</table>
viable seeds or persistent propagules.
B. Seeds (or vegetative propagules) remain viable in soil for at least 1 to 10 years 2
C. Seeds (or vegetative propagules) remain viable in soil for more than 10 years 3
U. Unknown

Score 3

Documentation:
Seed can remain viable in the soil for 20 – 50 years.
Sources of information:
Sonday, 2009.

4.2. Vegetative regeneration
A. No regrowth following removal of aboveground growth 0
B. Regrowth from ground-level meristems 1
C. Regrowth from extensive underground system 2
D. Any plant part is a viable propagule 3
U. Unknown

Score 2

Documentation:
Describe vegetative response:
It has a twisting taproot that extends very deep into the soil. Even a small piece of the root will grow into a new plant if it is left in the ground. Roots that spread radially act as a method of vegetative reproduction.
Sources of information:
Virginia Cooperative Extension, 2013.
Plants For A Future, 2012.
Sonday, 2009.

4.3. Level of effort required
A. Management is not required: e.g., species does not persist without repeated anthropogenic disturbance. 0
B. Management is relatively easy and inexpensive: e.g. 10 or fewer person-hours of manual effort (pulling, cutting and/or digging) can eradicate a 1 acre infestation in 1 year (infestation averages 50% cover or 1 plant/100 ft²). 2
C. Management requires a major short-term investment: e.g. 100 or fewer person-hours/year of manual effort, or up to 10 person-hours/year using mechanical equipment (chain saws, mowers, etc.) for 2-5 years to suppress a 1 acre infestation. Eradication is difficult, but possible (infestation as above). 3
D. Management requires a major investment: e.g. more than 100 person-hours/year of manual effort, or more than 10 person hours/year using mechanical equipment, or the use of herbicide, grazing animals, fire, etc. for more than 5 years to suppress a 1 acre infestation. Eradication may be impossible (infestation as above). 4
U. Unknown

Score 4

Documentation:
Identify types of control methods and time-term required:
Field Bindweed can develop and large patches and become very difficult to control.

Mechanical: Tillage is clearly effective on seedlings. However, plants may form perennial buds within six weeks of emergence. Tillage used for seedling control should be conducted within the first few weeks to prevent plants from surviving. Infrequent tillage used in fallowed fields or within orchards may actually promote field
bindweed infestations by eliminating annual weed competition and spreading root fragments around. If field bindweed patches are evident, avoid tilling them to prevent spread of the rootstocks. In this case, spot treatment herbicide applications will be more effective. Other intensive mechanical strategies include hand pulling or grubbing. These must be done repeatedly to be effective.

Chemical: Chemical control of field bindweed generally requires a multiple year approach. There are few herbicides that provide effective control which include 2,4-D (alone and in combination), glyphosate, dicamba, picloram, quinclorac, and paraquat.

Biological: There are two insects that are used in the Great Plains: the bindweed moth (Tyta luctuosa) was released in Arizona, Iowa, Missouri, Oklahoma, and Texas and the bindweed gall mite (Aceria malherbae) was released in Texas.

Sources of information:
California Department of Food and Agriculture, 2013.
Lyons, 2013.

References for species assessment:

June 20, 2013.
Citation: This IN ranking form may be cited as: Jacquart, E.M. 2011. Invasiveness ranking system for non-native plants of Indiana. Unpublished. Invasive Plant Advisory Committee (IPAC) to the Indiana Invasive Species Council, Indianapolis, IN.

Acknowledgments: The IN ranking form is an adaptation for Indiana use of the form created for New York by Jordan et al. (2009), cited below. Documentation for species assessed for New York are used for Indiana where they are applicable. The Invasive Plant Advisory Committee was created by the Indiana Invasive Species Council in October 2010, and is made up of the original members of the Indiana Invasive Plant Assessment Working Group (IPSAWG). Original members of IPSAWG included representatives of the The Nature Conservancy; Indiana Native Plant and Wildflower Society; Indiana Nursery and Landscape Association; Indiana Chapter of the American Society of Landscape Architects; Indiana Forage Council; Indiana Wildlife Federation; Indiana State Beekeepers Association; Indiana Beekeeper’s Association; Department of Natural Resources; Hoosier National Forest; Indiana Academy of Science; Natural Resources Conservation Service; Indiana Department of Environmental Management; Indiana Department of Transportation; Purdue Cooperative Extension Service; Seed Administrator, Office of the Indiana State Chemist.

References for the Indiana ranking form:

References for the New York ranking form:

