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1  |  INTRODUC TION

Despite urbanization being a relatively recent byproduct of the 
Anthropocene (Lewis & Maslin, 2015), already about 3% of Earth's 
land surface is urban (Liu et al., 2014), with further increases pro-
jected throughout the remainder of the 21st century (Gao & O’Neill, 
2020; Seto et al., 2012). Natural environments undergo marked 
transformations as a result of urbanization (Grimm et al., 2008), in-
cluding modifications to landscape composition (e.g., loss of suitable 
patches, homogenization and connectivity; Groffman et al., 2014; 

McKinney, 2006), natural processes (e.g., soil pollution and nutrient 
cycling; Isaksson, 2015) and ecological interactions (e.g., competition, 
predation and pathogens; Rivkin et al., 2019). Subsequently, local bi-
otic and abiotic interactions are altered and novel selection pressures 
thereby introduced, suggesting urban environments may be hotspots 
for microevolution (Alberti, 2015; Johnson & Munshi- South, 2017).

Another hallmark of the Anthropocene appears to be biological 
invasions, as the worldwide dispersal of plants and animals is heavily 
influenced by international trade and humankind's transportation 
network (Banks et al., 2015; Hulme, 2021). Like urbanization, these 
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Abstract
Biological invasions are becoming more prevalent due to the rise of global trade and 
expansion of urban areas. Ants are among the most prolific invaders with many ex-
hibiting a multiqueen colony structure, dependent colony foundation and reduced 
internest aggression. Although these characteristics are generally associated with the 
invasions of exotic ants, they may also facilitate the spread of native ants into novel 
habitats. Native to diverse habitats across North America, the odorous house ant 
Tapinoma sessile has become abundant in urban environments throughout the United 
States. Natural colonies typically have a small workforce, inhabit a single nest, and are 
headed by a single queen, whereas urban colonies tend to be several orders of magni-
tude larger, inhabit multiple nests (i.e., polydomy) and are headed by multiple queens 
(i.e., polygyny). Here, we explore and compare the population genetic and breeding 
structure of T. sessile within and between urban and natural environments in several 
localities across its distribution range. We found the social structure of a colony to 
be a plastic trait in both habitats, although extreme polygyny was confined to urban 
habitats. Additionally, polydomous colonies were only present in urban habitats, sug-
gesting T. sessile can only achieve supercoloniality within urbanized areas. Finally, we 
identified strong differentiation between urban and natural populations in each lo-
cality and continent- wide, indicating cities may restrict gene flow and exert intense 
selection pressure. Overall, our study highlights urbanization's influence in charting 
the evolutionary course for species.
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invasions often promote ecological disturbance, whereby invasive 
species outcompete native species for resources or fill an empty eco-
logical niche and alter the complexion of an ecosystem (Ehrenfeld, 
2010). Similarly, ecological disturbance itself may encourage biolog-
ical invasions by increasing the availability of resources (Lembrechts 
et al., 2016; Tilman, 1994) and/or altering the composition of com-
munities (Buckling et al., 2000), potentially implicating urbanization 
as another human- induced facilitator of invasion. Ants are among 
the most prolific of these invaders (Jeschke & Wittenborn, 2011), 
with around 240 invasive species globally that display a significant 
association with disturbed environments (Bertelsmeier et al., 2017). 
It is generally assumed that individual and colony- level plasticity in 
physiology, morphology and behaviour may enhance their invasion 
success. This plasticity may allow for rapid acclimation to novel eco-
logical pressures they encounter within their new environment to 
quickly rise to ecological dominance.

Many invasive ants possess a suite of shared characteristics 
that facilitate their success within new/disturbed environments, 
such as a polygyne social structure (i.e., multiple reproductive 
queens), dependent colony foundation (i.e., budding) and lack of 
aggression among non- nestmate workers (Eyer & Vargo, 2021; 
Lester & Gruber, 2016; McGlynn, 1999; Tsutsui & Suarez, 2003). 
A polygyne social structure may enhance the survival rate of a 
colony, as the colony can withstand the death of a single queen 
or multiple queens. The reproduction of multiple queens also al-
lows for greater colony growth because it relaxes the constraint on 
the upper limit of their egg- laying capacity (Boomsma et al., 2014; 
Boulay et al., 2014). Oftentimes, polygyny is associated with col-
ony foundation through budding (Cronin et al., 2013). This dispersal 
strategy entails the founding of new colonies by queens assisted 
by workers, dispersing from their natal nests on foot to establish 
new nests nearby (Hölldobler & Wilson, 1977; Keller, 1991). Colony 
foundation through budding is associated with high foundation 
success, as the help of workers increase survival and reproduction 
of new nests during the early establishment stage (Cronin et al., 
2013). However, this mode of foundation restricts dispersal of 
the species, often leading to the establishment of many geneti-
cally similar colonies across a landscape and thereby a pattern of 
isolation- by- distance (Schultner et al., 2016). Interestingly, this re-
duction in dispersal may promote polygyny and polydomy, and may 
ultimately lead to the formation of supercolonies –  extensive colo-
nies comprised of many nests exchanging workers, queens, brood 
and resources (Tsutsui & Suarez, 2003). This colony structure elim-
inates intraspecific competition, leading to dense networks of in-
terconnected nests, genetically indistinguishable from each other. 
The development of highly polygynous supercolonies enables 
invasive populations to reach tremendous densities and rapidly 
outcompete native species by allocating a high number of work-
ers to monopolize resources (Tsutsui & Suarez, 2003). For example, 
populations of the yellow crazy ant Anoplolepis gracilipes and the 
little fire ant Wasmannia auropunctata can reach densities of up to 
20 million and 240 million ants per hectare, respectively (Abbott, 
2005; Souza et al., 2008). To date, the association of polygyny, 

dependent colony foundation and development of a dense poly-
domous nest structure have been observed in many invasive ants, 
such as Linepithema humile, Pheidole megacephala, Monomorium 
pharaonis and Nylanderia fulva (Buczkowski & Bennett, 2009; Eyer 
et al., 2018; Tsutsui et al., 2000).

Although invasions are generally associated with establish-
ments in new countries or continents, they can also occur along a 
habitat continuum. The odorous house ant Tapinoma sessile is one 
such invader –  native to a variety of natural habitats across North 
America (e.g., forests, grasslands, bogs, etc.), this ant has become 
highly abundant in urban environments throughout the United 
States (Buczkowski, 2010; Buczkowski & Bennett, 2008; Menke 
et al., 2010). Interestingly, like more traditional invasive ants, T. ses-
sile exhibits a transition in its breeding system and social structure 
between its native and invasive populations. Colonies occurring in 
natural habitats are typically small (<200 workers) and consist of a 
single nest headed by a single queen (Buczkowski, 2010). On the 
other hand, urban colonies tend to be large (>100,000 workers) and 
made of several interconnected nests, each comprising numerous 
reproductive queens, with low internest aggression over large land-
scapes. This suggests the existence of supercolonies in this spe-
cies within urban environments (Buczkowski, 2010; Buczkowski & 
Bennett, 2008; Menke et al., 2010). However, these assessments 
have only been based on behavioural studies (Buczkowski, 2010; 
Buczkowski & Bennett, 2008; Buczkowski & Krushelnycky, 2011), 
while the genetic underpinnings of the colonies have not been an-
alysed. In T. sessile, four major mitochondrial clades have been de-
scribed across the United States (Menke et al., 2010). Remarkably, 
this shift in life history traits has occurred consistently across its 
distribution, rather than all urban colonies originating from a sin-
gle natural population (Menke et al., 2010). Therefore, plasticity 
in colony structure appears to be inherent within the species, and 
the repeated transition of small, monogyne natural habitat colo-
nies to large, polygyne urban colonies resembles the invasions of 
more traditional invasive ants. Thus, T. sessile represents a unique 
opportunity to determine the factors driving these trait differences, 
which may provide insights into their evolutionary trajectory and 
broaden our understanding of the mechanisms linking them to spe-
cies invasions.

Here, we conducted a large- scale analysis of the population and 
colony structure of T. sessile across the four geographic clades un-
covered within the United States (Menke et al., 2010). For each of 
the four clades, we performed a paired sampling of one urban and 
one natural habitat in close geographic proximity (except for the 
Mountain clade in Colorado –  see Methods). We first investigated 
the breeding structure of these populations to test for consistent 
transitions of monogyne colonies in natural habitats to polygyne 
colonies in urban areas, by assessing the number of queens per nest 
and the relatedness among nestmate workers. We then evaluated 
the colony structure of T. sessile in each locality by genetically in-
ferring whether different nests belong to the same polydomous 
colony, testing for unicoloniality within urban habitats and multico-
loniality within natural habitats. We also analysed whether workers 
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from different nests recognize each other as colony- mates through 
behavioural assays, testing for reduced aggression between non- 
nestmate workers in urban habitats compared to natural habitats, 
and assessed whether this discrimination toward non- nestmate 
workers is mediated through chemical cues. In addition, we inves-
tigated the dispersal ability of T. sessile by testing for an isolation- 
by- distance pattern in each locality and habitat. Finally, we discuss 
the potential evolutionary mechanisms enabling urban invasions by 
a native ant species, comparing these mechanisms with the life his-
tory traits shared by most invasive ant species.

2  |  MATERIAL S AND METHODS

2.1  |  Study sites and sampling

Nests of T. sessile were collected from July of 2018 to August of 2020 
in four localities across the United States: Bloomington, Indiana; 
Bay Area, California; Little Rock, Arkansas; and Boulder, Colorado 
(Figure 1a). These four localities correspond to the four geographic 
clades previously elucidated by Menke et al. (2010). For each local-
ity, two sites in close geographic proximity were identified –  one 
comprising the urban environment (residential or commercial areas) 
and the other comprising the natural environment, with fifteen nests 
collected in each habitat. No nests were found in the urban environ-
ment of Boulder, Colorado. Therefore, our total collection consisted 
of 104 nests across the four localities and seven total sites (details 
of the sampling are given in Table S1). Although T. sessile inhabits a 
variety of natural habitats, all natural collections were carried out 
within forests. As previous observations of the ant across several 
natural habitats are suggestive of a consistent natural disposition 
(Fellers, 1989; Kimball, 2016; Menke et al., 2010; Milford, 1999), we 
refer to our forest collections as natural colonies for the remainder 
of the paper.

In both habitats, entire nests were sampled to ensure a reliable 
count of queens and that ants collected belonged to the same nest, 
and no minimum collection distance was used between nests in 
order to not preclude the detection of polydomous colonies. The 
nests were transported to the laboratory and kept under standard 
conditions (28 ± 2°C, 12:12 h light period, and fed with an artificial 
ant diet (Dussutour & Simpson, 2008)). For each nest, eight workers 
were separately placed in 200 µl hexane for chemical analysis, while 
a subset of workers, queens and males were directly stored in 96% 
ethanol at 4°C for genetic analysis.

2.2  |  Genetic analyses

The genomic DNA of eight workers and up to eight queens and 
males from each nest was extracted following a modified Gentra 
Puregene extraction method (Gentra Systems Inc.). Species- specific 
microsatellite primers do not exist for T. sessile; instead, we tested 
39 markers shown to amplify in closely related species (Berman 

et al., 2014; Butler et al., 2014; Krieger & Keller, 1999; Zheng et al., 
2018; Zima et al., 2016). Forward primers were affixed with an M13 
tail to enable PCR multiplexing via fluorescent labelling with 6- FAM, 
VIC, PET, and NED (Boutin- Ganache et al., 2001). PCR conditions 
and multiplexing arrangements are given in the online Supporting 
Information (Table S2). PCR reactions were performed on a Bio- Rad 
thermocycler T100 (Bio- Rad). Multiplex PCR products were run on 
an ABI 3500 capillary sequencer (Applied Biosystems) along with 
the LIZ500 standard. Geneious v.9.1 was used for scoring alleles 
(Kearse et al., 2012). Of the 39 markers tested, 21 were discarded 
due to nonamplification or monomorphic amplification. The linkage 
disequilibrium (LD) for each pair of loci was tested for each local-
ity separately using genepop v4.7 (Rousset, 2008), with p- values cor-
rected via the Holm method to account for multiple comparisons 
(Holm, 1979). Loci exhibiting linkage disequilibrium were discarded 
from further analysis. Overall, the final data set includes 831 work-
ers genotyped at 12 polymorphic microsatellite loci.

Sequencing of the cytochrome oxidase 1 (COI) mitochondrial 
gene was performed on at least one worker from each nest, with 
multiple workers from a nest sequenced if microsatellite genotypes 
suggested they originated from different queens (n = 145). Gene 
sequences were amplified using primers LepF1 and LepR1, target-
ing a 658- bp fragment (Hajibabaei et al., 2006; Hebert et al., 2004). 
PCR products were purified with EXOSAP- it PCR purification kit 
(Affymetrix) and sequenced using the ABI BigDye Terminator v.3.1 
Cycle Sequencing Kit on an ABI 3500 Genetic Analyser (Applied 
Biosystems). Base calling and sequence reconciliation were per-
formed using CodonCode Aligner (CodonCode Corporation).

2.3  |  Population and colony structure analyses

2.3.1  |  Mitochondrial data set

A Bayesian phylogenetic tree and a haplotype network were con-
structed to assign each nest into one of the four clades previously 
described by Menke et al. (2010). In addition, the mitochondrial 
dataset was used to test for the presence of multiple haplotypes 
within nests, which would indicate the reproduction of multiple 
unrelated queens. MrBayes v.3.2 was used to construct the tree 
(Ronquist et al., 2012), using the generalized time reversible model 
with gamma- distributed rate variation across sites and a propor-
tion of invariable sites as the evolutionary model. Two simultane-
ous MCMC simulations ran for 2 x 106 generations using four chains 
(three heated and one cold), with each run sampled every 500 gen-
erations. The mitochondrial network was produced via the median- 
joining method (Röhl et al., 1999) implemented in POPART (Leigh 
& Bryant, 2015). The COI gene was extracted from the complete 
mitochondrial genome sequence of T. melanocephalum to use as an 
outgroup for both analyses (Du et al., 2019). Additionally, sequence 
divergence was compared within and between habitats and popula-
tions of T. sessile using the Kimura 2- parameter model (Kimura, 1980) 
in mega v. 10.2.2 (Kumar et al., 2018; Tamura et al., 2011).
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F I G U R E  1  (a) Sampling locations of Tapinoma sessile across the United States. For each locality, nests were sampled in both natural 
and urban environments, depicted as light- coloured (natural) and dark- coloured (urban) numbers in the figure. The thickened black lines 
connecting some nests represent nests that were found to belong to the same colony. Additionally, the stars next to each number denote 
the social structure of the colony -  white and black stars represent monogyne and polygyne colonies, respectively. Note that for each 
locality, the counting always begins with the first natural nest; also, note that no urban nests were found in Colorado. (b) Bayesian inference 
tree based on 145 COI sequences of T. sessile across the four localities, with one T. melanocephalum sequence as an outgroup. (c) PCA based 
on the microsatellite data of each individual from each nest sampled in the overall data set (dots represent individuals). (d) STRUCTURE 
analysis based on the microsatellite data across four values of K, which correspond to the levels of hierarchy present within the overall data 
set (2 = habitat; 4 = locality; 7 = habitat x locality)
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2.3.2  |  Microsatellite data set

The number and frequency of alleles, F- statistics (Weir & Cockerham, 
1984), and observed and expected heterozygosity (Nei, 1987) were 
calculated for each microsatellite marker, and for each locality and 
habitat (as well as overall values) using fstat v2.9.4 (Goudet, 2003). 
For the overall dataset, the hierarchical partitioning of the genetic 
diversity between localities, between habitats within localities, be-
tween nests within habitats, between individuals within nests, and 
within individuals was assessed using an analysis of molecular vari-
ance (AMOVA) implemented in the ade4 R package (Dray & Dufour, 
2007; R Core Team, 2020) via Poppr (Kamvar et al., 2014).

Three complementary approaches were used to determine 
whether workers collected from different nests belonged to the same 
colony. First, genotypic differentiation between each pair of nests 
within localities was tested using the log- likelihood G test imple-
mented in genepop v.4.7 (Rousset, 2008). Nests were considered dis-
tinct colonies if genotypic differentiation was found to be significantly 
different using Fisher's test together with the Holm method to account 
for multiple comparisons (Holm, 1979). Second, population structure 
was visualized with a principal component analysis (PCA) using the 
dudi.pca function in the adegenet R package (Jombart, 2008; R Core 
Team, 2020). Third, the presence of genetic structure was tested using 
the Bayesian clustering method implemented in STRUCTURE v.2.3.4 
(Falush et al., 2003; Pritchard et al., 2000). Simulations were run for K 
(i.e., genetic clusters) ranging from 1 to the maximum number of nests 
per data set, with each run of K replicated 20 times. The analyses were 
run under the admixture model with correlated allele frequencies en-
abled. Each run was initiated with a 50,000 burnin period, followed by 
100,000 iterations of the MCMC. The most likely number of genetic 
clusters (K) was inferred using the methods of both Evanno et al. (2005) 
and Puechmaille (2016), with the output visualized via CLUMPAK 
(Kopelman et al., 2015), as implemented in the web- based software 
StructureSelector (Li & Liu, 2018). The method of Puechmaille (2016) 
aims at unraveling finer partitioning in the data, whereas the Evanno 
et al. (2005) method aims at describing the primary partitioning. 
Finally, isolation- by- distance analyses were performed with Mantel 
tests using the vegan R package (Oksanen et al., 2020; R Core Team, 
2020), between matrices of genetic differentiation (FST) and geo-
graphic distance. The PCA, STRUCTURE and isolation- by- distance 
analyses were first performed for the overall data set, then for each 
locality, and finally for each habitat within each locality.

2.4  |  Breeding structure analyses

We estimated the number of queens per nest and the genetic related-
ness among nestmate workers for each locality and habitat. We also 
explored the possibility that queens use thelytokous parthenogen-
esis for the production of new queens, as this strategy was previously 
reported in several invasive ant species (Fournier et al., 2005; Pearcy, 
Goodismann et al., 2011; Rabeling & Kronauer, 2013). The presence 
(or lack thereof) of multiple queens per nest was first determined 

directly from field observations. For each nest, polygyny was con-
firmed genetically through the presence of multiple mitochondrial 
haplotypes and through the composition of worker microsatellite 
genotypes. Polygyny was inferred when worker genotypes could not 
be reliably assigned to a single queen (all workers carrying one of the 
two alleles of the mother queen at all microsatellite markers).

Relatedness coefficients (r) among nests were estimated using 
coancestry v.1.0.1.9 (Wang, 2011), following algorithms described by 
Queller and Goodnight (1989). As differences in allele frequencies 
may exist between localities, relatedness coefficients were calcu-
lated separately for each of the localities. Additionally, relatedness 
coefficients were estimated at three separate levels –  (1) between 
workers, (2) between queens, and (3) between workers and queens. 
Finally, we evaluated whether queens produce new queens through 
thelytokous parthenogenesis by comparing the heterozygosity level 
and relatedness between castes in each locality. As automictic the-
lytokous parthenogenesis generally increases homozygosity over 
time (Pearcy et al., 2006; Pearcy, Hardy, et al., 2011; but see Rey 
et al., 2011), a decrease in observed heterozygosity and increase in 
relatedness should be present in the parthenogenetically produced 
queens when compared against sexually produced workers. For 
these and all further comparative analyses, figures were generated 
using the ggstatsplot R package (Patil, 2021).

2.4.1  |  Chemical analyses

Chemical differentiation between nests was determined by ana-
lysing eight randomly chosen workers per nest using GC– MS. 
Individual ants were knock- downed for 1 min at −20°C and ex-
tracted in 200 µl hexane for 5 min with intermittent gentle mixing. 
Extracts were evaporated under a stream of high- purity nitrogen, 
redissolved in 35 μl of hexane and transferred to a 100 μl insert in 
a 1.5 ml autoinjection vial. A volume of 2 μl was injected in split-
less mode using a 7693B Agilent autosampler into a HP- 5MS UI col-
umn (30 m × 0.250 mm internal diameter × 0.25 μm film thickness; 
Agilent) with ultrahigh- purity helium as carrier gas (0.75 ml/min con-
stant flow rate). The column was held at 50°C for 1 min, increased to 
320°C at 10°C/min, and held at 320°C for the last 10 min. The over-
all chemical profile of each individual was investigated by calculating 
the relative abundance of each compound. All compounds occurring 
in at least 10 samples were used to calculate the chemical profile of 
individuals, but we did not aim at identifying the different chemical 
compounds. The chemical profile of individuals was compared be-
tween nests, localities and populations.

We performed a PCA using ade4 (Dray & Dufour, 2007; R Core 
Team, 2020) in order to visualize the variation within and between 
nests. Additionally, we estimated the pairwise cuticular hydrocarbon 
(CHC) differentiation between each nest through the calculation of 
the Euclidean distance between nest centroids. We then assessed 
the level of CHC variation within each nest by calculating the aver-
age Euclidean distance between each of the eight workers and the 
centroid of the nest. The between nest and within nest calculations 
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were performed on the first two PC’s from the PCA. We first tested 
whether the level of CHC variation within nests differs between na-
tive and urban environments, as well as between monogyne and po-
lygyne nests. Finally, we tested whether this level of CHC variation 
within a nest increases with genetic diversity (using expected het-
erozygosity as a proxy), and whether the level of CHC differentiation 
between nests increases with genetic differentiation or geographic 
distance, with significance determined using Student's t- distribution 
for Pearson's correlation coefficient.

2.4.2  |  Behavioural assays

Aggression assays were performed by randomly selecting a single 
worker from two distinct nests and placing them together in a 5 cm 
diameter petri dish for 5 min. The sides of the petri dish were coated 
with Fluon to prevent the ants from escaping, and the bottom of the 
petri dish was covered with filter paper that was changed between 
trials to prevent odor transfer between trials. The subsequent be-
havioural interactions were scored on a four- level scale of escalating 
aggression (Suarez et al., 1999): (1) touch (contacts that included pro-
longed antennation), (2) avoid (contacts that resulted in one or both 
ants quickly retreating in opposite directions), (3) aggression (lunging, 
biting, and pulling legs or antennae), or (4) fight (prolonged aggression 
between individuals). For each trial, the highest level of aggression 
was recorded, with the mean of 10 trials for each nest pairing used to 
calculate an average aggression score between nests. Pairs of nests 
assigned to the same colony based on microsatellite markers were 
used as a control for this experiment. Twenty- five nest combinations 
were tested in Arkansas, California and Indiana (10 urban- urban, 10 
natural- natural and 5 urban- natural) and 10 were tested in Colorado 
(10 natural- natural; no urban colonies found) for a total of 850 trials 
(85 nest combinations x 10 trials). Nests were matched across a short 
(minimum 0.001 km) to long- distance (maximum 26 km) gradient to 
identify whether geographic distance influenced aggression between 
nests. Similarly, aggression was compared against both genetic and 
chemical differentiation. The significance of all three relationships 
was evaluated using Student's t distribution for Pearson's correlation 
coefficient. Finally, aggression levels among and between urban and 
natural nests were compared using Kruskal- Wallis tests, with Dunn's 
test utilized to elucidate significant pairwise relationships and p- values 
adjusted by the Holm method to account for multiple comparisons.

3  |  RESULTS

3.1  |  Population and colony structure analyses

3.1.1  |  Mitochondrial data set

A total of 68 mitochondrial haplotypes were identified, of which 36 
were shared between individuals. The mean genetic distance be-
tween localities was 0.079, while it was only 0.039 within localities 

(Table S3). Mitochondrial haplotypes were rarely shared between lo-
calities (i.e., a single one shared between Arkansas and Indiana). Yet, 
the topology of the tree did not align completely with geography and 
therefore did not concur entirely with the four geographic clades 
previously uncovered by Menke et al. (2010) (Figure 1b; the mito-
chondrial network is provided in Figure S1). Notably, a substantial 
portion of the eastern US samples (i.e., Indiana and Arkansas) inter-
mix with one another and appear on three distinct branches of the 
tree. Additionally, two samples from California were located nearest 
to the two basal eastern US branches, while samples from Colorado 
were split across two clades.

Our results further confirmed the finding of Menke et al. (2010) 
that mitochondrial haplotypes were commonly shared between 
monogyne and polygyne social structures (n = 12 –  dispersed across 
all localities). However, haplotypes were rarely shared between nat-
ural and urban habitats, as only a single haplotype was shared be-
tween the two (in Indiana; Figure 1b and Figure S1), suggesting that 
little genetic exchange occurs between habitats. Finally, the pres-
ence of multiple haplotypes within a nest was rare (n = 7 nests –  only 
in the eastern US), suggesting polygyne colonies primarily develop 
via the association of related queens.

3.1.2  |  Microsatellite data set

The 12 microsatellite markers used in this study contained an aver-
age of 12.6 alleles (range = 3– 49; Table S4). When split by habitat, the 
natural and urban datasets contained an average of 9.8 (range = 3– 
38) and 9.2 (range = 3– 37) alleles, respectively (Table S4). Therefore, 
the allelic diversity was not significantly different between natural 
and urban habitats (Mann- Whitney U = 4.31, p = .907). Furthermore, 
the allelic diversity was not significantly different between any of 
the four localities (Kruskal- Wallis H = 1.72, p = .633).

In the overall data set, the AMOVA analysis revealed slight ge-
netic diversity partitioned between localities (10.6%), with more 
substantial levels partitioned between habitats within localities 
(23.9%), between nests within habitats (27.2%), and within individ-
uals themselves (45.5%; Table S5). The difference between locali-
ties is mostly driven by a clear separation of the eastern US samples 
(i.e., Indiana and Arkansas) from the western localities (i.e., Colorado 
and California) observed at K = 2 (Figure 1c,d). Consistently, Mantel 
tests identified significant isolation- by- distance when analysing lo-
calities as a whole (Figure S2), contrasting the results obtained by 
the mitochondrial marker, where eastern and western populations 
did not segregate into two clearly distinct clades. Interestingly, at 
K = 4, the eastern US samples grouped by habitat rather than by 
locality, despite being geographically distant (Figure 1d). To a lesser 
extent, a similar pattern can be seen in the western localities, as the 
natural habitats of California and Colorado mostly grouped together 
(Figure 1d). At K = 7, both the localities and the habitats within locali-
ties clustered independently (Figure 1d), highlighting that the overall 
distribution of genetic variability is strongly influenced by both geo-
graphic distance and habitat.
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Within localities, strong differentiation (i.e., high FST) was found 
between almost every nest (Table 1, Figure S3). Similarly, G tests 
revealed that most nests represented a single genetic entity. Of the 
nest pairs that could not be differentiated, 11 were in the urban 
environment and two were in the natural environment (Supporting 
Information Data Appendix S1). STRUCTURE analyses using the 
method of Puechmaille (2016) (i.e., finer partitioning) produced cor-
roborating results, with best K mostly segregating each nest as its 
own genetic cluster (Figure 2). However, two trios of geographically 
adjacent nests were not genetically different from each other in 
urban habitats within California (nests 22– 24) and Arkansas (nests 
23– 24, 29; Figures 1a and 2b,c). These two trios of nests also clus-
tered together when urban habitats were analysed separately from 
the natural habitat (Figure S4).

Remarkably, the Evanno et al. (2005) method (i.e., primary par-
titioning) consistently depicted clear separation between urban 
and natural habitats (Figure 2). K = 2 best explained the struc-
ture in the data for each locality and mostly segregated urban and 
natural colonies into two distinct clusters (Figure 2). This strong 
dichotomy between urban and natural habitats was also high-
lighted using PCAs within each locality (Figure 2). No isolation- by- 
distance was found when analysing each habitat separately within 
localities (all p > .05; Figure S4); however, isolation- by- distance 
was significant when comparisons between habitats within locali-
ties were considered (p = .001, .001 and .016 for Indiana, Arkansas 
and California respectively; Figure 3a). Indeed, the interhabitat 
genetic differentiation between nests was always higher than 
the differentiation between nests within a habitat (Figure 3b). 
However, the genetic differentiation between nests mostly did 
not differ across the two habitats (Figure 3b). AMOVAs for each 
locality were similar to the overall data set, with most genetic di-
versity partitioned within individuals (avg. = 50%), and substan-
tial amounts partitioned between habitats (avg. = 26%) and nests 
within each habitat (avg. = 31%; Table S6). Taken together, these 
results suggest that most nests sampled across the four localities 
represent distinct colonies. They also highlight the substantial dif-
ferentiation between urban and natural populations and support 

the continent- wide observation that colonies of T. sessile grouped 
by habitat rather than by locality within the eastern and western 
populations.

3.2  |  Breeding structure analyses

Overall, the urban environment contained significantly more po-
lygyne nests (67%) than the natural environment (38%, p = .002; 
Figure 4a). Although both social structures were found in both 
habitats, the number of queens collected per nest was significantly 
higher in urban habitats (mean ± SD = 13.00 ± 15.70, up to 62) than 
natural habitats (mean ± SD = 2.61 ± 3.76, up to 21; Figure 4a). This 
pattern was found for the overall data set (p < .001), as well as for 
each locality separately (despite being non- significant for Indiana, 
p = .117).

Accordingly, the coefficient of relatedness between workers was 
significantly higher in the natural environment (Rw- w = 0.74) than in 
the urban environment (Rw- w = 0.65). This association was found 
significant for the overall dataset (p < .001), as well as for each lo-
cality separately (all p < .05; Figure 4b). However, the relatedness 
among workers was surprisingly high considering the number of 
queens present in each nest. This is especially true for urban nests 
(mean Rw- w = 0.61, 0.72 and 0.61 for the urban habitats of Arkansas, 
California and Indiana, respectively), as they usually contained a high 
number of queens. No values of relatedness were found close to 
zero (lowest value was 0.22), which is expected under a random as-
sociation of a high number of queens or with the free movement of 
individuals among nests across the population.

Although natural nests were significantly more outbred (i.e., 
lower negative FIS) than their urban counterparts (p < .001; Table 1), 
the high relatedness within urban nests does not appear to stem 
from inbreeding (mean FIS = – 0.015). This suggests that queens 
do not exclusively participate in intranidal mating, although some 
level is likely considering the high relatedness values (and has been 
thought to occur in T. sessile –  see Kannowski (1959)). Finally, the re-
latedness among queens within nests was also high (RQ- Q = 0.68 and 

Location Alleles Average HO HE FIS FST

Natural

Indiana 69 5.75 0.367 0.273 −0.344 0.375

Arkansas 53 4.42 0.309 0.240 −0.291 0.308

California 51 4.25 0.371 0.240 −0.542 0.519

Colorado 53 4.42 0.310 0.228 −0.360 0.391

Overall 117 9.75 0.339 0.245 −0.384 0.591

Urban

Indiana 64 5.33 0.363 0.329 −0.101 0.370

Arkansas 57 4.75 0.306 0.316 0.031 0.363

California 75 6.25 0.233 0.240 0.033 0.568

Overall 110 9.17 0.299 0.295 −0.015 0.555

All 144 12.00 0.322 0.266 −0.211 0.601

TA B L E  1  The number and average 
number of alleles, observed (HO) and 
expected (HE) heterozygosity, inbreeding 
coefficient (FIS) and fixation index (FST) 
for each locality and habitat across the 
12 microsatellite loci. These statistics can 
be found for each microsatellite marker in 
Table S2
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0.66, for natural and urban polygyne nests, respectively), an uncom-
mon finding for a polygynous ant and indicative of daughter queens 
being retained within their natal nest. However, this relatedness was 
not significantly higher (Figure S5) and the observed heterozygos-
ity not significantly lower (Figure S6) when compared to the worker 
caste in any of the localities, suggesting that new queens are not 
produced asexually.

3.2.1  |  Chemical analyses

Population clustering based on the CHCs yielded similar results to 
those of the genetic analyses. At the overall scale, substantial chemi-
cal differentiation was found between localities, with the eastern 
US, California, and Colorado samples appearing distinct from one 
another (Figures S3 and S7). Consequently, CHC differentiation was 

F I G U R E  2  Population structure of Tapinoma sessile across the United States. Clustering of nests in (a) Indiana, (b) Arkansas, (c) California 
and (d) Colorado using a PCA and STRUCTURE on the microsatellite markers. For each locality, the light- shaded and dark- shaded ellipses 
in the PCA represent natural nests and urban nests, respectively. Additionally, two runs of STRUCTURE are shown for each locality, which 
correspond to best K (i.e., genetic clusters) as inferred by two different methods (Evanno above and Puechmaille below)
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significantly positively correlated with both geographic distance and 
genetic differentiation at the overall level (Figure S7). The Colorado 
samples were completely separate from the California samples, de-
spite appearing genetically similar to samples from the California 
natural habitat. Interestingly, the urban and natural habitats from 
Arkansas, as well as the urban habitat from Indiana, clustered to-
gether chemically (Figures S3 and S7).

The chemical segregation of nests between natural and urban 
habitats became clearer when clustering analyses were performed at 
the locality level (Figure 5). Like the genetic differentiation, the chem-
ical differentiation was mostly higher between nests from distinct 
habitats than between nests from the same habitat within a given lo-
cality (Figure 5). Consequently, the chemical differentiation between 
nests is associated within both genetic differentiation and geographic 
distance within most localities (Figure S8). Interestingly, nests 3 and 
4 from the natural habitat of Indiana clustered with the urban habitat 
both genetically (Figure 2a) and chemically (Figure 5a). Overall, these 
findings suggest that chemical differentiation is influenced by both 
genetic and environmental factors, and therefore by the clear effect 
of habitat on the genetic differentiation mentioned above.

Interestingly, the within- nest CHC variation was not significantly 
different between monogyne and polygyne nests in any locality or 
for the overall dataset. However, the within- nest variation was sig-
nificantly different between natural and urban nests, with natural 
nests having increased variation at the overall level; a similar, but not 
significant, pattern was also observed within each locality (Figure 
S9). No significant correlations between CHC variation and genetic 
diversity were found within any locality (Figure S8).

3.2.2  |  Behavioural assays

Aggression assays further demonstrated that most nests appear 
to be distinct colonies. The overwhelming majority of pairings 
obtained aggression scores of 3 or 4, with significant differences 
between groups mainly driven by slight fluctuations in avoid-
ance/aggressive behaviours (Figure 6). The notable exception to 
these aggressive behaviours occurred in the California urban plot, 
where a more even distribution of aggression scores resulted from 
the lack of aggression between the trio of nests collected in San 

F I G U R E  3  (a) Isolation- by- distance plots for each locality. Habitat specific (for Indiana, Arkansas and California) isolation- by- distance 
plots, as well as an overall isolation- by- distance plot, are available in Appendix S1. (b) Comparisons of genetic differentiation (FST) between 
each pair of nests, both between and within habitats. Each gold dot on a boxplot represents the mean of the group, and only significant 
pairwise comparisons are shown (as determined by Dunn's test with p- values adjusted according to the Holm method; *p < .05, **p < .01, 
***p < .001). Note that Colorado contains only intrahabitat comparisons for both (a) and (b), as nests were only found in natural habitats
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F I G U R E  4  Breeding structure of Tapinoma sessile overall and across the four localities. (a) The percentage of monogyne and polygyne 
nests in natural and urban habitats, as well as the number of queens collected in nests where at least one queen was found. (b) The average 
relatedness among workers within a nest in urban and natural habitats. For both (a) and (b), each smaller dot represents a nest, and each gold 
dot denotes the mean of the habitat
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Francisco, California (nests 22– 24; Figures 1a and 6). A similar trio 
of nests without aggression were also collected from the urban en-
vironment in Little Rock, Arkansas (nests 23– 24, 29; see Figure 1a). 
Given that the genetic analyses above also support that the trio 
of nests in both cities comprise a single genetic entity, these two 
sites potentially represent supercolonies, albeit geographically lim-
ited (approximately 7500 and 3600 m2 in California and Arkansas, 
respectively).

The correlation analyses revealed little link between aggres-
sion and geographic distance, genetic differentiation or chemical 
differentiation (Figure S10), most probably driven by the high ag-
gression that was observed in most aggression assays. Again, the 
notable exceptions here were the urban San Francisco and Little 
Rock sites mentioned above, as low genetic differentiation and 
aggression between some nests at these sites led to a significant 
positive correlation between genetic differentiation and aggres-
sion (Figure S10).

4  |  DISCUSSION

Our extensive phylogenetic, chemical and behavioural study re-
vealed several insights into the colony and breeding structure of 
T. sessile across the United States. First, we confirmed that the social 
structure of a colony appears to be a plastic trait found in both natu-
ral and urban habitats; however, we did find monogyny prevalent in 
the natural habitat and polygyny more common in urban habitats. 
Furthermore, the extent of polygyny within nests was far greater in 
the urban habitat; however, differentiation was present between al-
most every nest in each locality and habitat. This finding, supported 
by our chemical and behavioural analyses, suggests that urban colo-
nies mostly do not consist of large supercolonies. Yet, two trios of 
nests in two separate urban habitats lacked genetic, chemical and 
behavioural differentiation. As no such polydomous colonies were 
found in any natural habitat, this suggests only the urban environ-
ment harbors the necessary conditions for supercolony formation 

F I G U R E  5  Clustering of nests in (a) Indiana, (b) Arkansas, (c) California and (d) Colorado using a PCA on each nest's CHC profile. For 
each locality, the light- shaded and dark- shaded ellipses in the PCA represent natural nests and urban nests, respectively. Additionally, the 
boxplots illustrate the CHC differentiation of nests among and between habitats. Each smaller dot on the boxplots represents the difference 
between a pair of nests, while each gold dot denotes the mean of the group. Only significant pairwise comparisons are shown (as determined 
by Dunn's test with p- values adjusted according to the Holm method; *p < .05, **p < .01, ***p < .001). Clustering of nests based on CHC 
profiles in the overall population can be found in Figure S7
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in T. sessile. Interestingly, our results uncovered clear genetic and 
chemical differentiation between natural and urban populations. 
This clear separation was observed within each locality, and also at 
a large geographic scale as nests clustered by habitat rather than 
by locality within the eastern and western clades. These findings 
suggest that urbanization acts as a strong barrier to gene flow in 
this species, with the heterogeneity of suitable habitat within cit-
ies potentially limiting immigration and emigration. Additionally, the 
clustering of nests by habitat rather than by locality may denote a 
strong signature of selection for the urban environment, with spe-
cific genotypes most probably found within cities. Overall, these re-
sults provide further support for urbanization as an intense driver 
of evolution.

Modified ecological interactions within the urban environment 
are known to affect the composition of communities and have been 
specifically shown to promote the abundance of arthropods (Faeth 
et al., 2011), including ants (Vonshak & Gordon, 2015). Therefore, 
certain characteristics of urban habitats may have allowed for T. ses-
sile to achieve larger colony sizes than their natural conspecifics. For 
one, the abundance of traditionally limited resources may have sta-
bilized, or even increased, colony productivity within urban habitats 
(Faeth et al., 2005; Shochat et al., 2006). For example, such a re-
lease and subsequent increase in productivity within urban environ-
ments has been shown to lead to larger body sizes in both mammals 
(Hantak et al., 2021) and guppies (Santana Marques et al., 2020). 
Additionally, increases in temperature in the winter (Arnfield, 2003; 
Oke, 1982) may extend the foraging and worker production season 
for urban colonies (Shochat et al., 2006, 2010). Furthermore, fluc-
tuations between seasons are lessened and extreme climate events 
buffered, which have been documented to prolong urban breeding 

seasons (Lowry et al.,2013; Shochat et al., 2006). Therefore, these 
highly productive environments may be providing favourable breed-
ing conditions throughout most of the year, possibly contributing to 
the large colony sizes T. sessile attains in cities.

However, although urbanization may reduce resource variation 
through time, resource variation in space may be intensified com-
pared to natural habitats. Urban landscapes are often associated with 
a patchy distribution of resources (Cadenasso et al., 2007), which 
might have profound consequences on the evolution of dispersal 
traits in urban populations. Generally, costs of dispersal (e.g., loss 
of propagules, energetic demands) represent strong selective forces 
against dispersal (Bonte et al., 2012; Bowler & Benton, 2005). This 
is exemplified by the reduction in dispersal capability of island bird 
populations because a lack of predators nullifies the benefit flight 
offers as a predator- avoidance technique (Carlquist, 1966a; McNab, 
1994; Wright et al., 2016), as well as in island plant and insect popu-
lations due to the high risk of landing in the ocean (Carlquist, 1966a, 
1966b; Cody & Overton, 1996; Roff, 1990). Similarly, the fragmented 
nature of urban environments may increase the failure rate of dis-
persers, and therefore select against dispersal. For example, urban 
populations of the pavement weed Crepis sancta produce a higher 
proportion of nondispersing plants compared to their unfragmented 
natural populations (Cheptou et al., 2008). Finally, frequent dis-
turbances within urban environments may increase the success of 
dependent colony foundation (i.e., shorter dispersal) rather than de-
crease the success of independent foundation (i.e., longer dispersal). 
In ants, Tsuji and Tsuji (1996) demonstrated that dependent colony 
foundation should be favoured in environments where the intrinsic 
rate of natural increase (r) is high because the generation time of a 
queen is shortened. Urban areas are frequently disturbed habitats, 

F I G U R E  6  Violin plots of aggression between nests, with aggression compared within and among habitats for each locality (except 
Colorado). The gold dot on each violin represents the mean, and only significant pairwise comparisons are shown (as determined by Dunn's 
test with p- values adjusted according to the Holm method)
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which probably represent such high r- inducing environments (Tsuji, 
2006). Further ecological models based on spatial structure found 
that dependent foundation was favoured over long- distance inde-
pendent foundation in frequently disturbed habitats of relatively 
small spatial scale, despite its inherent costs (e.g., short dispersal 
distance, reduced production of differentiated colonies (Schultner 
et al., 2016)) (Nakamaru et al., 2007, 2014). In short, frequent, local- 
scale ecological disturbances can create free space near the natal 
nest, which can then be more rapidly occupied by queens dispersing 
on foot through budding than by queens dispersing on wing. Overall, 
reduced nest- site availability due to habitat patchiness and/or fre-
quent disturbance within urban environments may be selecting for 
reduced dispersal of new queens and favoring the establishment of 
new colonies via budding.

Notably, our results revealed surprisingly high levels of related-
ness within urban colonies, including highly polygyne ones. These 
high relatedness values (~0.6) not only suggest that queens are re-
tained during colony growth, but also that some form of colony 
inheritance by one maternal lineage takes place every generation. 
The retention and subsequent inheritance of daughter queens 
from the same lineage would prevent the drastic loss of related-
ness that the integration of new unrelated queens would other-
wise cause, as well as prevent colony boundary collapse through a 
subsequent loss of non- nestmate discrimination. Interestingly, the 
development of large polydomous colonies observed in two urban 
localities was also not associated with a loss of relatedness among 
nestmate workers when compared to the genetic background of 
the locality. This finding supports the hypothesis that large poly-
gyne/polydomous colonies arise through the extreme growth of 
a single colony (Helanterä et al., 2009), probably through a com-
bination of retaining daughter queens and the dependent colony 
foundation mentioned above. This hypothesis of supercolony de-
velopment in invasive species supposes that polygyny and poly-
domy are pre- existing traits of the species within its native range 
(e.g., Fournier et al., 2012; Pedersen et al., 2006); indeed, we found 
that these social traits were plastic in the natural habitat of T. ses-
sile. This supercolony formation pathway allows for the coexistence 
of several competitive supercolonies within a given introduced/
urban locality, a pattern found in many different invasive ant spe-
cies (Abbott, 2005; Espadaler et al., 2007; Giraud et al., 2002). Our 
results contrast with the two other hypotheses proposed to explain 
supercolony development in invasive ants. These hypotheses sug-
gest that supercolonies arise from (i) a loss of nestmate recognition 
through a loss of diversity at the recognition loci or (ii) the selection 
for reduced aggression within densely populated areas (Helanterä 
et al., 2009). These two scenarios would both be accompanied by a 
loss of relatedness and reduced aggression among all urban nests, 
which was not found in our study.

Interestingly, we did not find significant isolation- by- distance 
within any habitat, although it is expected under dependent colony 
foundation. Rather, strong genetic differentiation was observed 
between nests regardless of geographic distance. The lack of 
isolation- by- distance within the urban habitat has several possible 

explanations. For one, urban populations of T. sessile may have re-
tained their dispersal capability despite facing a potentially increased 
cost of dispersal in patchy urban environments because the benefits 
of dispersal (e.g., inbreeding avoidance) outweigh the costs (e.g., not 
finding a suitable nesting site; Bowler & Benton, 2005). However, 
each urban population in the study was significantly more inbred 
than their respective natural population despite not experiencing a 
reduction in genetic diversity, suggesting a shift in dispersal strategy 
between the habitats. Therefore, a second explanation for the lack 
of isolation- by- distance, considering the increased inbreeding within 
urban populations, may be sex- biased dispersal. As reduced disper-
sal may increase rates of inbreeding, male- biased dispersal could be 
selected for as a mechanism to avoid sib- mating (Bowler & Benton, 
2005). Indeed, both simulation models (Henry et al., 2016; Perrin & 
Mazalov, 2000) and empirical studies (Gauffre et al., 2009; Oklander 
et al., 2010; Stow et al., 2001) have found that polygynous systems 
select for male- biased dispersal, especially in fragmented habitats 
(e.g., cities). As dependent colony foundation in ants often results in 
a pattern of isolation- by- distance (Schultner et al., 2016), males of 
T. sessile may disperse far from their natal nest, rendering urban hab-
itat isolation- by- distance nonsignificant. Therefore, dependent col-
ony foundation combined with male- biased dispersal within urban 
populations may explain the elevated level of inbreeding compared 
to natural populations, as well the strong genetic sub- structure be-
tween most nests. However, another possible explanation may be 
that structure does exist within the urban environment and was 
simply not detected because we did not perform a focused transect 
study. If this is the case, perhaps enhanced female philopatry and 
dependent colony foundation alone could explain the elevated levels 
of inbreeding within urban environments.

Isolation- by- distance was found to be significant when analysing 
both habitats together within a locality, highlighting the stark dif-
ferentiation present between natural and urban populations. The 
minimal amount of gene flow between the two habitats suggests 
some selective force acting against interhabitat colonization, as well 
as implies selection for certain traits within each environment. A ge-
netic signature of rapid anthropogenic evolution has been purported 
for many species (Hendry et al., 2008), although a more recent re-
view found a lack of conclusive evidence for many studies (Lambert 
et al., 2020). Rates of phenotypic change have been shown to be 
elevated in urban systems (Alberti et al., 2017), which are potentially 
driven by changes in the underlying genotypes. Variation in ecolog-
ical conditions can certainly drive evolutionary shifts in species’ life 
history traits, but whether phenotypic shifts are primarily the result 
of genetic adaptations to urban environments via selection or simply 
phenotypic plasticity is unclear (Palkovacs & Hendry, 2010). Such 
a phenotypic shift has occurred in urban populations of the acorn 
ant Temnothorax curvispinosus, with urban workers exhibiting higher 
heat tolerance and diminished cold tolerance compared to natural 
populations (Diamond et al., 2018; Perez et al., 2018). A similar diver-
gence was found between field- born workers and workers raised for 
two generations in the lab, indicating that such differences between 
habitats is driven by evolutionary divergence through selection 
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rather than simply plasticity (Martin et al., 2019). Reciprocal trans-
plant experiments corroborated these results, with T. curvispinosus 
colonies experiencing higher survival in natal habitats compared to 
novel habitats, and local colonies displaying higher survival rates 
than foreign colonies (Martin et al., 2021).

Interestingly, the two localities in the eastern United States 
grouped genetically by habitat rather than by locality. While this 
result makes sense for natural populations given the few barriers 
to gene flow between these regions of the country, it runs counter 
to several recent studies in other species which found heightened 
differentiation among distinct urban populations (Björklund et al., 
2010; Jason et al., 2016; Lourenço et al., 2017). However, gene 
flow between isolated urban populations may be sustained through 
human- mediated dispersal (Crispo et al., 2011). Such a scenario 
has been coined the “urban facilitation model”, whereby human- 
facilitated gene flow reduces differentiation between urban pop-
ulations and may actually increase urban genetic diversity through 
the introduction of novel alleles (Miles et al., 2018, 2019). Indeed, 
invasion rates of ants have been shown to strongly correlate with 
waves o human globalization (Bertelsmeier et al., 2017), and a recent 
study on the tiny acorn ant Temnothorax nylanderi identified no sig-
nificant differentiation between populations in distinct cities across 
France (Khimoun et al., 2020), highlighting that ants may be prime 
candidates for human- mediated dispersal. Considering selective 
pressures probably differ between the urban and nonurban habi-
tats, connections between urban sites may facilitate the evolution 
of an “urban ecotype” (Schapira & Boutsika, 2012; Yakub & Tiffin, 
2017). A more in- depth sampling scheme across the eastern United 
States is needed to test for such a gene flow assisted convergence 
in Tapinoma sessile.

5  |  CONCLUSION

Convergent selection between distinct urban populations has been 
found across wide variety of taxa (Johnson et al.,2018; Reid et al., 
2016; Theodorou et al., 2021; Yakub & Tiffin, 2017), suggesting at-
tributes of the anthropogenic environment impart a homogenous 
influence upon evolution. Our study not only demonstrated the 
repeated life history shifts between natural and urban populations 
of T. sessile, but also highlighted the presence of significant genetic 
differentiation between these populations. However, as mentioned 
previously, all natural collections for this study took place within for-
ests, which may not fully represent the natural phenotype. Future 
sampling throughout the many natural habitats occupied by T. ses-
sile may elucidate potential habitat- associated variation. Additional 
studies are also needed to further characterize the influence of 
urbanization on this ant. For example, transect sampling may be 
performed to test for the presence of isolation- by- distance within 
urban environments and to evaluate whether the reduction of gene 
flow along the natural- to- urban habitat gradient is progressive or 
abrupt. Also, a genomic approach could help identify consistent 
genomic regions under selection to the urban environment across 

different US cities. Overall, these results reinforce the need for mul-
tifaceted approaches in identifying signatures of local adaptation 
(Rivkin et al., 2019) and thereby the potential drivers of selection 
within cities (Lambert et al., 2020), as well as underscore the urban 
landscape as a powerful evolutionary force.
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